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SpaFL Framework for Learning Sparse Structures

➢ What is SpaFL?

• It is for learning structured sparsity across clients with limited computing and 

communication resources

• Can clients collaborate to learn optimal sparse structures without sending parameters? 

➢ How does SpaFL make structured sparsity?

• We first define a learnable threshold 𝜏 for each neuron/filter 

→ can be applied to MLP, CNN, and Attention layers

• Prune entire neuron/filter if its connected average weights is smaller than the threshold
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Problem Formulation

➢ How can clients learn the optimal sparse structures with thresholds 𝝉?

➢ Does it really work?

➢ We only trained threshold 𝜏 while freezing model parameters 𝑤

Global thresholds

Model parameters

LabelInput

Loss function
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Initialization 10 10 1

Learning spare 

structures can 

improve the 

performance



4

SpaFL Flow

➢ SpaFL only communicates updated thresholds 𝜏 between the server and clients

At round 𝑡, the server randomly selects a set of clients 𝑆𝑡 and 

broadcasts global thresholds 𝝉(𝑡)

Clients obtain

a sparse model 

𝒘𝑘 𝑡 = 𝒘𝑘 𝑡 ⊙

𝒑𝑘 𝑡; 𝝉 𝑡 , ∀𝑘 ∈ 𝑆𝑡
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SpaFL Generalization Analysis

➢ SpaFL only communicates updated thresholds 𝝉 between the server and clients

➢ As models become more sparse, the generalization error bound becomes tighter

➢ SpaFL can improve the generalization error by learning optimal sparse structures 

by communicating thresholds 𝝉

Generalization error
Decreasing function of 

model density
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Simulation Results

➢ Performance comparison with other SOTA baselines

SpaFL outperforms other baselines with less 

computing and communication resources

Visualization of a learned conv layer on 

CIFAR10
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Question: msukim@vt.edu

Thank you!

mailto:msukim@vt.edu
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