UniDSeg: Unified Cross-Domain 3D Semantic Segmentation via Visual Foundation Models Prior

Motivation & Contribution

Currently, DA3SS and DG3SS methods have primarily focused on generalizing or adapting between synthetic and real scenes. This leaves a gap in exploring a universal framework, enabling the generalization and adaptation of 3SS models across datasets.

- Our method is groundbreaking in introducing the prompt-tuning concept into the universal model for DG3SS and DA3SS tasks.
- We propose a novel learnable-parameter-inspired mechanism to the off-the-shelf VFMs, which maximally preserves pre-existing target awareness in VFMs to further enhance its generalizability. Image from Camera

Multi-modal DA3SS & DG3SS

S:S	ource / T:Target	nuSce	enes:US	A/Sing.	nuSce	enes:Day	y/Night	vKľ	TTI/sK	ITTI	A2	D2/sKľ	TTI
Task	Method	2D	3D	xM	2D	3D	xM	2D	3D	xM	2D	3D	xM
	Source-only	58.4	62.8	68.2	47.8	68.8	63.3	26.8	42.0	42.2	34.2	35.9	40.4
	logCORAL 33	64.4	63.2	69.4	47.7	68.7	63.7	41.4	36.8	47.0	35.1	41.0	42.2
	MinEnt 43	57.6	61.5	66.0	47.1	68.8	63.6	39.2	43.3	47.1	37.8	39.6	42.6
	BDL 29	62.0	64.8	70.4	47.0	69.6	63.0	21.5	44.3	35.6	34.7	41.7	45.2
	xMUDA 19	64.4	63.2	69.4	55.5	69.2	67.4	42.1	46.7	48.2	38.3	46.0	44.0
	AUDA 30	64.0	64.0	69.2	55.6	69.8	64.8	35.8	37.8	41.3	43.0	43.6	46.8
DA	DsCML 35	65.6	56.2	66.1	50.9	49.3	53.2	38.4	38.4	45.5	39.6	45.1	44.5
	Dual-Cross 28	64.7	58.1	66.5	58.5	69.7	68.0	40.7	35.1	44.2	45.9	40.0	48.6
	SSE 58	64.9	63.9	69.2	62.8	69.0	68.9	45.9	40.0	49.6	44.5	46.8	48.4
	BFtD 45	63.7	62.2	69.4	57.1	70.4	68.3	41.5	45.5	51.5	40.5	44.4	48.7
	MM2D3D 6	71.7	66.8	<u>72.4</u>	70.5	70.2	72.1	53.4	50.3	56.5	42.3	46.1	46.2
	VFMSeg 51	70.0	65.6	72.3	60.6	70.5	66.5	57.2	52.0	<u>61.0</u>	45.0	52.3	50.0
	UniDSeg	67.2	67.6	72.9	63.2	71.2	<u>71.2</u>	60.5	50.9	62.0	50.7	55.4	57.5
	xMUDA 19	58.7	62.3	68.6	43.0	68.9	59.6	25.7	37.4	39.0	34.9	36.7	41.6
DG	MM2D3D 6	69.7	62.3	<u>70.9</u>	65.3	63.2	<u>68.3</u>	37.7	40.2	<u>44.2</u>	39.6	35.9	<u>43.6</u>
	UniDSeg	66.5	64.5	72.3	57.0	70.5	70.0	57.6	44.7	60.0	48.8	46.3	54.4

VFM-based Encoder with Different Training Strategies for DG3SS

		nuSce	enes:US	A/Sing.	nuSce	nuScenes:Day/Night nuScenes:Si			enes:Sin	g./USA	
Strategy	Visual Backbone	Params	2D	3D	xM	2D	3D	xM	2D	3D	xM
Finetune Frozen Ours	CLIP:ViT-B	86.9M 0.0M 1.82M	62.4 59.7 63.8	64.1 64.5 64.7	69.6 69.7 71.5	53.3 46.8 55.9	70.7 71.0 70.7	68.8 69.8 70.0	65.7 58.3 68.2	67.9 67.9 68.0	72.9 71.2 74.0
Finetune Frozen Ours	CLIP:ViT-L	305M 0.0M 4.70M	65.5 60.4 66.5	64.5 64.2 64.5	70.4 70.1 72.3	54.9 50.2 57.0	70.7 70.5 70.5	67.3 69.5 70.0	69.9 62.2 70.6	67.8 67.8 68.0	74.5 73.3 75.1
	S:Source / T:Target			ITTI/sK	ITTI	A2	2D2/sKI	TTI	A2]	D2/muS/	cones
									1 12	$D_2/1105$	cenes
Strategy	Visual Backbone	Params	2D	3D	xM	2D	3D	xM	2D	3D	xM
Strategy Finetune Frozen Ours	Visual Backbone CLIP:ViT-B	Params 86.9M 0.0M 1.82M	2D 54.9 49.1 55.6	3D 41.5 42.0 43.6	xM 55.8 54.4 58.0	2D 43.0 35.3 43.2	3D 43.8 43.8 44.6	xM 51.5 48.7 52.0	2D 55.4 51.2 56.3	3D 50.1 49.4 50.3	xM 60.2 58.1 61.0

Ou

Yao Wu¹, Mingwei Xing¹, Yachao Zhang^{1†}, Xiaotong Luo¹, Yuan Xie², Yanyun Qu^{1†} ¹Xiamen University ²East China Normal University

Overview:

We introduce a novel task-specific VFM-based encoder, which is guided by pointlevel prompts from 3D information. We place layer-wise learnable blocks to take full advantage of semantic understanding of diverse levels and modalities, which inherits potential target information of VFMs into the current training model.

Method

VFM-based Encoder:

 E_l^{TI}

(b) Learnable Spatial Tunability

Experiments & Ablation Studies & Visualization

	Source-free DA3SS											
	S:Source / T:Target			nuScenes:USA/Sing.			nuScenes:Day/Night			A2D2/sKITTI		
Task	Method	Source-free	2D	3D	xM	2D	3D	xM	2D	3D	xM	
DA	Baseline Consistency Pseudo-Label SUMMIT [†] [41]	\checkmark	58.4 58.7 58.9 61.6	62.8 63.2 62.7 66.2	68.2 68.1 68.5 68.4	47.8 50.4 48.3 53.8	68.8 66.8 69.0 68.9	63.3 63.6 63.2 68.2	34.2 37.1 37.6 42.9	35.9 36.5 36.6 43.7	40.4 41.8 41.5 46.8	
-	UniDSeg UniDSeg	× ✓	67.2 69.3	67.6 71.7	72.9 73.5	63.2 62.6	71.2 70.7	71.2 68.7	50.7 49.6	55.4 59.1	57.5 58.6	

Fully-supervised 3SS Results on the SemanticKITTI Validation Set

Method	car	bicycle	motorcycle	truck	pus	person	bicyclist	motorcyclist	road	parking	sidewalk	other-ground	building	fence	vegetation	trunk	terrain	pole	traffic-sign	mIoU (%)
MinkowskiNet 7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	61.1
SPVCNN 42	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	63.8
Cylinder3D 62	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	65.9
2DPASS [†] 52	95.3	47.1	73.7	81.8	56.0	73.5	87.6	2.1	92.4	45.2	78.6	1.0	90.8	61.8	88.4	69.5	75.5	58.1	51.8	64.7
2DPASS [†] 52 w/ TTA	96.6	52.2	77.9	91.1	68.2	77.9	92.0	0.2	94.0	50.6	81.4	1.2	91.8	66.3	89.6	72.0	77.3	63.0	53.5	68.2
Ours	96.2	47.2	70.1	84.3	64.5	74.1	89.5	2.1	92.6	46.6	79.1	3.2	90.9	62.8	88.3	69.9	75.1	58.6	52.1	65.6+0.9
Ours w/ TTA	97.0	52.3	73.4	92.6	71.1	78.3	92.3	0.0	94.1	51.3	81.8	3.3	92.1	67.4	89.5	72.0	77.0	63.8	54.6	68.6 +0.4

Role of Depth	Params	nuSce	nuScenes:Sing./USA				
		2D	3D	xM			
Deep Encoding Point-level Prompts	86.9M 0.48M	66.1 67.8	67.7 67.9	73.0 73.8			

It is designed to learn alternately between two lightweight modules: Modal Transitional Prompting (MTP) $PG_l(\cdot, \cdot)$ and Learnable Spatial Tunability (LST) $TB_l(\cdot)$.

$$\tilde{E}_{l} = L_{l}(\tilde{E}_{l-1}) + TB_{l}(L_{l}(\tilde{E}_{l-1})), \quad l = 1, 2, ..., L,$$
$$\tilde{E}_{l-1}[1:,:] = E_{l-1}[1:,:] + PG_{l}(X^{2D}, X^{Dep}),$$

MTP is designed to capture 3D-to-2D transitional prior and task-shared knowledge of this information from the prompt space, before being fed into layer L_{I} .

LST is introduced to bridge the discrepancy between the pre-training dataset and the target scene in the query space for seeking matched prompting after encoding in layer L_{I} .

$$\begin{split} E_l^{PG} &= \Phi(\phi_l(E_0^{2D} \uplus E_0^{LF} \uplus E_0^{Dep})), \\ B^3 &= \delta_2(L_l(\tilde{E}_{l-1})[1:,:] + W_{up}^\top \times (W_{down}^\top \times L_l(\tilde{E}_{l-1})[1:,:]) + J_l \times \delta_1(O_l)), \\ J_l &= SoftMax(\frac{L_l(\tilde{E}_{l-1})[1:,:] \times O_l^\top}{\sqrt{D}}), \quad J_l \in \mathbb{R}^{M \times K}, \\ O_l &= O_{l,a} \times O_{l,b}, \end{split}$$

Params	Trainable Params	Cost	MTP	LST	_
5.9M	1.82M	2.09%	0.48M	1.34M	_
05M	4.70M	1.54%	1.78M	2.92M	
07M	4.34M	1.41%	1.42M	2.92M	

Visualization

Different Components

MTP	LST	nuSce	nes:Sin	g./USA	A2D2/sKITTI				
	201	2D	3D	xM	2D	3D	xM		
Frozen	VFM	58.3	67.9	71.2	35.3	43.8	48.7		
√ √	√ √	63.9 65.7 68.2	67.8 67.8 68.0	72.5 73.3 74.0	40.4 41.8 43.2	44.0 44.2 44.6	50.5 51.1 52.0		

Different 2D and 3D Backbones

3D Backbone	DA3SS	USA/Sing.					
5D Duckoone	DII000	2D	3D	xM			
SparseConvNet	xMUDA	64.4	63.2	69.4			
	UniDSeg	67.2	67.6	72.9			
MinkowskiNet	xMUDA	65.9	64.0	69.7			
	UniDSeg	67.5	68.6	73.1			

Task	2D Backbone	USA/Sing.						
		2D	3D	xM				
DG	CLIP:ViT-L	66.5	64.5	72.3				
	SAM:ViT-L	66.8	64.7	72.6				
DA	CLIP:ViT-L	67.2	67.6	72.9				
	SAM:ViT-L	67.8	68.8	73.3				

Email: wuyao@stu.xmu.edu.cn

⁽a) Modal Transitional Prompting