FinCon: A Synthesized LLM Multi-Agent System with Conceptual Verbal Reinforcement for Enhanced Financial Decision Making

Yangyang Yu*, Zhiyuan Yao*, Haohang Li*, Zhiyang Deng*, Yuechen Jiang*, Yupeng Cao*, Zhi Chen*, Jordan W. Suchow, Zhenyu Cui, Rong Liu, Zhaozhuo Xu, Denghui Zhang, Koduvayur Subbalakshmi, Guojun Xiong, Yueru He, Jimin Huang, Dong Li, Qianqian Xie

> This is a joint work of Stevens Institute of Technology, Harvard University, The FinAI

Introduction

Innovations of FinCon's design

LLMs remain insufficient for making high-quality financial sequential decisions. We propose FinCon, a comprehensive agent-based approach to using LLMs to manage financial decision making, including single-asset trading and portfolio management.

Gaps in literature	Our solutions
(1) Long-term risk exposure	A dual-level risk control component
(2) Inability for portfolio management	External portfolio optimization solver
(3) Heavy pressure on single-agent	A multi-agent system
(4) Peer-communication costs and unclear optimization goal	A synthesized Manager-Analyst hierarchical communication structure

Methodology

Methodology: trading tasks modeling

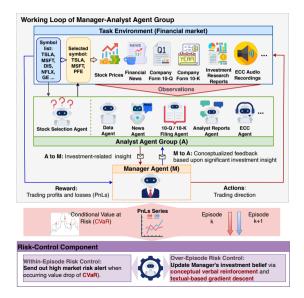
- We model two financial decision-making tasks as partially observable markov decision processes (POMDPs)
- > The optimization objective for the whole system can be written as:

$$\max_{\boldsymbol{\theta}} \mathbb{E} \Big[\sum_{t=0}^{\infty} \alpha^t R_t^{\Pi^{\boldsymbol{\theta}}} \Big]$$
(1)

where policies are parameterized by textual prompts θ .

The FinCon system solves this optimization problem via a Conceptual Verbal Reinforcement (CVRF) method (a prompt engineering technique, without fine-tuning of language models' intrinsic parameters).

2.3 Synthesized multi-agent hierarchical structure design



Experiments

3.1 Experiments: single stock trading task

Comparison of key performance metrics during the testing period for the single-asset trading tasks involving **eight assets**, between FinCon and other algorithmic agents. 1

			TSLA	1		AMZN	1		NIO			MSFI	
Categories	Models	$\mathbf{CR}\%\uparrow$	$\mathbf{SR}\uparrow$	$\mathbf{MDD\%}\downarrow$	$\mathbf{CR} \ \% \uparrow$	$\mathbf{SR}\uparrow$	$\mathbf{MDD\%}\downarrow$	$\mathbf{CR}\%\uparrow$	$SR\uparrow$	$MDD\% \downarrow$	$\mathbf{CR}\%\uparrow$	$\mathbf{SR}\uparrow$	$\mathbf{MDD\%}\downarrow$
Market	B&H	6.425	0.145	58.150	2.030	0.072	34.241	-77.210	-1.449	63.975	27.856	1.230	15.010
Our Model	FINCON	82.871	1.972	29.727	24.848	0.904	25.889	17.461	0.335	40.647	31.625	1.538	15.010
LLM-based	GA FinGPT FinMem FinAgent	16.535 1.549 34.624 11.960	0.391 0.044 1.552 0.271	54.131 42.400 15.674 55.734		-0.199 -1.810 -0.773 -1.493	37.213 29.671 36.825 33.074	-4.959	-1.574 -0.121 -1.180 0.051	3.155 37.344 64.144 19.181	-31.821 21.535 -22.036 -27.534	1.315 -1.247	39.808 16.503 29.435 39.544
DRL-based	A2C PPO DQN	-35.644 1.409 -1.296	-0.805 0.032 -0.029	61.502 49.740 58.150	-12.560 3.863 11.171	-0.444 0.138 0.398	37.106 28.085 31.174	-91.910 -72.119 -35.419	-1.352	68.911 62.093 56.905	21.397 -4.761 27.021	0.962 -0.214 1.216	21.458 30.950 21.458
	AAPL			GOO	3	NFLX		CO	COIN				
Categories	Models	$CR\%\uparrow$	SR↑	$MDD\%\downarrow$	CR $\% \uparrow$	SR↑	$\mathbf{MDD\%}\downarrow$	CR% 1	SR↑	MDD%↓	CR%	↑ SR†	MDD%↓
Market	B&H	22.315	1.107	20.659	22.420	0.891	21.191	57.338	1.794	20.926	-21.75	6 -0.31	1 60.187
Our Model	FINCON	27.352	1.597	15.266	25.077	1.052	17.530	69.239	2.370	20.792	57.04	5 0.82	5 42.679
LLM-based	GA FinGPT FinMem FinAgent	5.694 20.321 12.397 20.757	0.372 1.161 0.994 1.041	14.161 16.759 11.268 19.896	-1.515 0.242 0.311 -7.440	-0.192 0.011 0.018 -1.024	8.210 26.984 21.503 10.360	41.770 11.925 -10.306 61.303	0.472 6 -0.478	20.926 20.201 27.692 20.926	19.27 -99.55 0.811 -5.97	3 -1.80 0.01	7 74.967 7 50.390
DRL-based	A2C PPO DQN	13.781 14.041 21.125	0.683 0.704 1.048	14.226 22.785 16.131	8.562 2.434 20.690	0.340 0.097 0.822	21.191 25.202 21.191	-8.176 -33.144 21.753	-1.049		-	-	-

¹CR stands for Cumulative Return. SR stands for Sharpe Ratio. MDD stands for Max Drawdown. Note that the highest and second highest CRs and SRs have been tested and found statistically significant using the Wilcoxon signed-rank test. The highest CRs and SRs are highlighted in red, while the second highest are marked in blue.

3.2 Experiments: portfolio management task

FINCON's performance with the Markowitz Mean-Variance (MV) portfolio and FINRL in managing two sets of compact portfolios: Portfolio 1:[TSLA, MSFT, PFE]; Portfolio 2: [AMZN, GM, LLY]. FinCon leads the key performance metrics, CR and SR.

Models	CR % ↑	SR↑	MDD % \downarrow
FinCon	113.836	3.269	16.163
Markowitz MV	12.636	0.614	17.842
FinRL-A2C	19.461	0.831	26.917
Equal-Weighted ETF	9.344	0.492	21.223

Table 1.1: Key performance metrics comparisonamong all portfolio management strategies ofPortfolio 1.

Models	CR % ↑	SR↑	MDD %↓
FinCon	32.922	1.371	21.502
Markowitz MV	10.289	0.540	25.099
FinRL-A2C	11.589	0.649	15.787
Equal-Weighted ETF	15.061	0.867	14.662

Table 1.2: Key performance metrics comparisonamong all portfolio management strategies ofPortfolio 2.

3.3 Experiments: ablation studies I

We evaluate our unique risk control component through two ablation studies. The first study assesses its ability to control risk within episodes using conditional value at risk (CVaR).

The performance of FinCon with the implementation of CVaR won a leading performance in both single-asset trading and portfolio management tasks.

Task	Assets	Market Trend	Models	CR %↑	SR↑	MDD %↓
	GOOG	General Bullish ≯	w/ CVaR w/o CVaR	25.077 -1.461	1.052 -0.006	17.530 27.079
Single Stock	NIO	General Bearish 📡	w/ CVaR w/o CVaR	17.461 -52.887	0.335 -1.002	40.647 70.243
Portfolio Management	(TSLA, MSFT, PFE)	Mixed	w/ CVaR w/o CVaR	113.836 14.699	3.269 1.142	16.163 17.511

Table 2: Key metrics FinCon with vs. without implementing CVaR for within-episode risk control.

3.3 Experiments: ablation studies II

The second study highlights the importance of the over-episode risk control mechanism in updating the trading manager agent's beliefs for a holistic understanding of current trading circumstances.

The performance of FinCon with the implementation of CVRF won a leading performance in both single-asset trading and portfolio management tasks.

Task	Assets	Market Trend	Models	CR %↑	SR↑	MDD %↓
Single Steele	GOOG	General Bullish 🗡	w/ belief w/o belief	<mark>25.077</mark> -11.944	<mark>1.052</mark> -0.496	17.530 29.309
Single Stock		General Bearish 📐	w/ belief w/o belief	<mark>17.461</mark> 8.197	<mark>0.335</mark> 0.156	40.647 55.688
Portfolio Management	(TSLA, MSFT, PFE)	Mixed	w/ belief w/o belief	113.836 28.432	<mark>3.269</mark> 1.181	16.163 27.535

Table 3: Key metrics FinCon with vs. without implementing belief updates for over-episode risk control.

4. Conclusion

- FinCon is a novel LLM-based multi-agent framework for financial decision-making tasks, including single stock trading and portfolio management.
- Central to the system is the Synthesized Manager-Analyst hierarchical communication structure and a dual-level risk control component.
- Manager agent synthesizes insights from specialized analyst agents who distill financial data from multiple sources into key investment insights.
- The dual-level risk control component introduces a new approach to defining agent personas, enabling dynamic updates of systematic risk and market beliefs within agent communication.

THANK YOU !