

MetaAligner: Towards Generalizable Multi-Objective Alignment of Language Models

Kailai Yang¹, Zhiwei Liu¹, Qianqian Xie², Jimin Huang³, Tianlin Zhang¹, Sophia Ananiadou¹

¹ The University of Manchester ² The Fin AI

Presenter: Kailai Yang kailai.yang@manchester.ac.uk

Multi-Objective Alignment of LLMs

- Alignment of Large Language Models (LLMs)
 - Target: Generating high-quality responses that align with human expectations and values;
 - Objectives: Maximizing reward values modelled by human/LLM preference data;
 - Practices: RLHF, Direct Preference Optimization...
- Multi-objective (MO) Alignment
 - Fact: Heterogeneous human expectations make scalar supervisions inefficient;
 - MO alignment simultaneously aligns multiple objectives (e.g. The 3H goals);
 - Practices: MORLHF, MODPO, RiC...
- Current Challenges of MO Alignment
 - Require repetition of high-cost alignment algorithms for each newly-introduced policy model;
 - Poor generalizability
 - Statically aligned on pre-determined objectives;
 - No efforts in expanding and evaluating their capabilities on unseen objectives

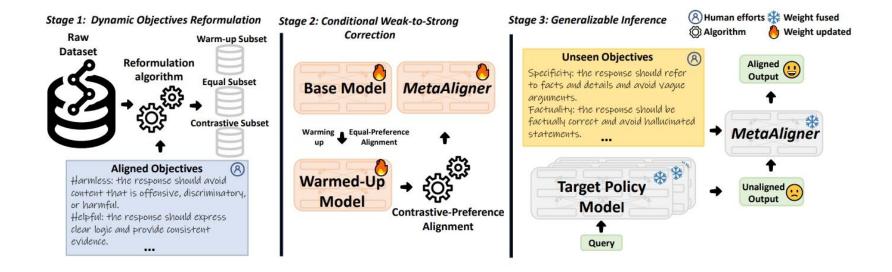
MetaAligner

Algorithm	Paradigm	Multi-Objective Alignment	Policy-Agnostic Alignment	Generalizability
RLHF [22]	PPO	×	×	×
MORLHF [19]	PPO	~	×	×
MODPO [10, 39]	SFT, DPO	~	×	×
RiC [35]	SFT	~	×	×
Aligner [12]	SFT	×	\checkmark	×
MetaAligner	SFT	V	V	~

- MetaAligner: the first policy-agnostic and generalizable method for multiobjective preference alignment
 - **Dynamic objectives reformulation** algorithm reorganizes traditional alignment datasets into dynamic-objective alignment dataset;
 - **Conditional weak-to-strong correction** aligns the weak outputs of policy models to approach strong output;
 - Generalizable inference flexibly adjusts target objectives by updating their text descriptions in the prompts.

Model Overview

The University of Manchester



Dynamic Objectives Reformulation

Algorithm 1 Dynamic objectives reformulation. **Require:** Raw dataset $D_m : \{q_i, y_{i1}, y_{i2}, P_i\}_{i=1}^m$; Objective text descriptions: $[\langle d_1 \rangle, ..., \langle d_N \rangle];$ Prompting template: $\mathcal{T}(q, y, \mathcal{O}, t)$ **Ensure:** Contrastive subset \mathcal{D}_c ; Equal subset \mathcal{D}_e . 1: $\mathcal{D}_c \leftarrow \emptyset, \mathcal{D}_e \leftarrow \emptyset \Rightarrow$ Initialize the 2 subsets. 2: for $i \in \{1, ..., m\}$ do \triangleright Loop on instances. $\mathcal{O}_{\succ} \leftarrow \varnothing, \mathcal{O}_{\prec} \leftarrow \varnothing, \mathcal{O}_{\equiv} \leftarrow \varnothing$ 3: for $j \in \{1, ..., N\}$ do 4: if p_{ij} is \succ then ▷ Collect the 5: objectives where y_{i1} outperforms y_{i2} . $\mathcal{O}_{\succ} \leftarrow \mathcal{O}_{\succ} \cup \{\langle d_i \rangle\}$ 6: else if p_{ii} is \prec then ▷ Collect the 7: objectives where y_{i2} outperforms y_{i1} . $\mathcal{O}_{\prec} \leftarrow \mathcal{O}_{\prec} \cup \{ \langle d_i \rangle \}$ 8: else \triangleright Collect the objectives where y_1 9: and y_2 performs equally. 10: $\mathcal{O}_{\equiv} \leftarrow \mathcal{O}_{\equiv} \cup \{ \langle d_j \rangle \}$ end if 11: 12: end for if $\mathcal{O}_{\succ} \neq \emptyset$ then Build the training pairs 13: where y_{i1} is used as the target. $t \leftarrow better$ 14: $\mathcal{O}_{\succ} \leftarrow random_shuffle(\mathcal{O}_{\succ})$ 15: $\mathcal{D}_c \leftarrow \mathcal{D}_c \cup \{ (\mathcal{T}(q_i, y_{i2}, \mathcal{O}_{\succ}, t), y_{i1}) \}$ 16: end if 17: if $\mathcal{O}_{\prec} \neq \emptyset$ then Build the training pairs 18: where y_{i2} is used as the target. $t \leftarrow better$ 19: 20: $\mathcal{O}_{\checkmark} \leftarrow random \ shuffle(\mathcal{O}_{\checkmark})$ $\mathcal{D}_c \leftarrow \mathcal{D}_c \cup \{(\mathcal{T}(q_i, y_{i1}, \mathcal{O}_{\prec}, t), y_{i2})\}$ 21: 22: end if if $\mathcal{O}_{=} \neq \emptyset$ then Build equally-preferred 23: training pairs. $t \leftarrow equal$ 24: $\mathcal{O}_{\equiv} \leftarrow random_shuffle(\mathcal{O}_{\equiv})$ 25: $\mathcal{D}_e \leftarrow \mathcal{D}_e \cup \{ (\mathcal{T}(q_i, y_{i2}, \mathcal{O}_{\equiv}, t), y_{i1}) \}$ 26: 27: end if 28: end for

- Construct a dynamic multi-objective dataset;
 - Triggers MetaAligner's ability for flexible adjustment of alignment objectives.
- We use the following prompting template:

 $[\mathcal{T}(q, y, \mathcal{O}, t)]$ Edit the following Question-Answer pair to make it $\{t\}$ considering the following objectives $\{\mathcal{O}\}$ | Question: $\{q\}$ | Answer: $\{y\}$ | Edit:

• Advantages:

- Instance-level alternation of the target objectives enables flexible alignment;
- Mutual alignment fully leverages the supervision information;
- Reward-free alignment avoids complicated preference-toreward mapping.

Conditional Weak-to-Strong Correction

• An SFT-based training objective:

$$\underset{\theta}{\operatorname{argmin}} - \mathbb{E}_{(q,y_0,y,\mathcal{O})\sim\mathcal{D}} \left[\log \delta_{\theta}(y | \mathcal{T}(q,y_0,\mathcal{O},t)) \right]$$

- Advantages:
 - Computation resources is detached from policy model size;
 - Works via policy model outputs, allowing training and inference on close-source policy models.
- Three-step Model Training:
 - Warming up;
 - Equal-preference alignment;
 - Contrastive-preference alignment.

Generalizable Inference

• Manipulate the target objectives by adjusting combinations of text descriptions in the objective set.

$$\mathcal{O} = \langle d_3 \rangle; \langle d_1 \rangle; \langle d_4 \rangle$$

• Flexible adjustment of text descriptions for existing objectives and injections of unseen objectives.

$$\mathcal{O}^* = \langle d_3 \rangle; \langle d_1 \rangle; \langle d_4 \rangle; \langle d_5 \rangle; \langle d_6^* \rangle$$

Experimental Results

Table 2: Performance of *MetaAligner*-(1.1B, 7B, 13B) on 3 datasets over different policy models. The responses are simultaneously aligned on all trained objectives, then evaluated on each objective. "IF" denotes the "Instruction following" objective. "+" shows the advantage of aligned outputs over the unaligned outputs on win rates against the ground-truth responses.

		HH-RLHF			UltraFeedback				IMHI			
MetaAligner	Policy Model	Harmless	Helpful	Humor	IF	Honest	Truthful	Helpful	Correct	Informative	Professional	
1.1B	LLaMA2-Chat-7B	+10.0%	+20.0%	+14.75%	+11.0%	+15.0%	+14.33%	+9.0%	+18.33%	+20.55%	+31.67%	
	LLaMA2-Chat-13B	+10.75%	+9.08%	+13.25%	+8.66%	+15.34%	+16.33%	+7.67%	+11.11%	+8.33%	+25.0%	
	LLaMA2-Chat-70B	+6.58%	+7.42%	+22.58%	+6.0%	+12.67%	+17.33%	+16.33%	+8.33%	+14.23%	+17.23%	
	Gemma-instruct-2B	+8.5%	+12.25%	+12.33%	+14.67%	+14.67%	+13.0%	+5.33%	15.55%	+35.55%	+37.23%	
	Gemma-instruct-7B	+4.0%	+7.75%	+23.17%	+9.0%	+10.0%	+4.67%	+14.0%	+18.9%	+31.12%	+36.11%	
	Vicuna-7B	+11.5%	+10.83%	+20.33%	+11.33%	+13.33%	+12.33%	+7.0%	+10.0%	+7.22%	+6.33%	
	Vicuna-13B	+7.42%	+13.0%	+19.17%	+11.66%	+14.34%	+15.33%	+10.0%	+12.22%	+7.78%	+3.34%	
	Vicuna-33B	+8.5%	+2.59%	+23.83%	+8.0%	+11.67%	+6.33%	+6.67%	+8.34%	+4.44%	+6.12%	
	GPT-3.5-Turbo	+1.42%	+7.5%	+17.84%	+5.0%	+5.0%	+3.66%	+1.0%	+9.67%	+1.33%	+9.33%	
	Claude-3-Sonnet	-3.83%	+1.58%	+13.17%	+4.67%	+2.67%	+2.67%	+3.0%	+7.0%	+2.33%	+6.66%	
7B	LLaMA2-Chat-7B	+25.0%	+27.0%	+20.75%	+34.66%	+36.0%	+37.0%	+28.0%	+21.67%	+32.22%	+43.89%	
	LLaMA2-Chat-13B	+28.75%	+20.58%	+18.25%	34.0%	+37.34%	+37.66%	+23.3%	+25.56%	+30.0%	+33.89%	
	LLaMA2-Chat-70B	+16.58%	+14.42%	+29.08%	+31.0%	+27.0%	+31.33%	+17.0%	+20.56%	+17.23%	+21.67%	
	Gemma-instruct-2B	+20.0%	+18.75%	+17.83%	+41.33%	+40.67%	+42.33%	+31.33%	+25.0%	+50.55%	+51.67%	
	Gemma-instruct-7B	+11.0%	+23.25%	+26.67%	+33.67%	+35.34%	+31.0%	+29.0%	+35.01%	+52.23%	+56.11%	
	Vicuna-7B	+19.5%	+18.83%	+27.33%	+38.0%	+39.0%	+37.0%	+32.33%	+23.33%	+22.78%	+23.33%	
	Vicuna-13B	+14.92%	+21.0%	+30.67%	+34.66%	+40.0%	+39.67%	+36.34%	+25.55%	+20.0%	+15.01%	
	Vicuna-33B	+28.0%	+17.09%	+30.83%	+30.0%	+37.34%	+32.33%	+29.33%	+11.11%	+16.11%	+8.34%	
	GPT-3.5-Turbo	+15.92%	+21.5%	+22.84%	+29.99%	+30.34%	+28.0%	+14.34%	+18.67%	+16.33%	+14.22%	
	Claude-3-Sonnet	+19.17%	+19.08%	+26.17%	+22.33%	+21.0%	+21.67%	+19.0%	+11.33%	+19.33%	+11.33%	
13B	LLaMA2-Chat-7B	+24.0%	+30.5%	+23.75%	+51.83%	+47.5%	+45.33%	+38.67%	+28.33%	+38.33%	+50.56%	
	LLaMA2-Chat-13B	+17.75%	+16.58%	+15.75%	+46.33%	+48.67%	+46.83%	+41.17%	+30.56%	+37.22%	+40.56%	
	LLaMA2-Chat-70B	+16.58%	+19.42%	+26.58%	+44.33%	+35.0%	+45.5%	+24.0%	+31.67%	+30.56%	+36.12%	
	Gemma-instruct-2B	+18.5%	+17.25%	+24.33%	+55.0%	+44.67%	+51.33%	+36.83%	+35.55%	+63.33%	+65.0%	
	Gemma-instruct-7B	+17.5%	+23.75%	+30.17%	+42.0%	+40.17%	+35.17%	+31.17%	+34.45%	+50.0%	+49.44%	
	Vicuna-7B	+19.0%	+19.83%	+26.33%	+41.5%	+39.83%	+44.33%	+37.5%	+24.44%	+23.33%	+21.11%	
	Vicuna-13B	+18.92%	+28.5%	+32.67%	+47.33%	+49.17%	+47.0%	+40.67%	+28.33%	+23.34%	+18.9%	
	Vicuna-33B	+31.5%	+20.09%	+27.83%	+50.5%	+53.17%	+45.83%	+38.5%	+23.89%	+23.89%	+14.45%	
	GPT-3.5-Turbo	+18.42%	+25.0%	+29.34%	+40.33%	+40.17%	+36.83%	+23.67%	+26.67%	+25.66%	+33.62%	
	Claude-3-Sonnet	+21.17%	+20.58%	+27.17%	+38.5%	+39.5%	+37.67%	+29.83%	+28.67%	+20.0%	+11.2%	

Experimental Results

The University of Manchester

Table 3: Comparisons of win rates between alignment methods. "GPU Hours" records the summed GPU running time on all datasets. "-Equal Pref." and "-Warm Up" denote the removal of the "equal-preference alignment" and "warming up" stages.

			HH-RLHF				UltraFeedback					
Policy Model	Algorithm	GPU Hours	Harmless	Helpful	Humour	Avg.	IF	Honest	Truthful	Helpful	Avg.	
	MORLHF	1892.3	62.83%	51.2%	77.5%	63.84%	32.18%	33.7%	26.1%	33.7%	31.42%	
	MODPO	405.9	65.0%	64.0%	78.0%	69.0%	30.82%	43.4%	37.19%	25.0%	34.1%	
	SFT	247.34	66.5%	75.0%	76.5%	72.67%	27.0%	36.5%	26.0%	36.5%	31.5%	
LLaMA2-Chat-7B	Aligner-7B	236.8	72.0%	81.9%	70.12%	74.67%	52.38%	44.23%	37.19%	39.1%	43.23%	
	MetaAligner-1.1B	120.48	62.5%	75.0%	77.0%	71.5%	27.67%	27.0%	33.0%	25.33%	28.25%	
	MetaAligner-7B	242.68	77.5%	82.0%	83.0%	80.83%	51.33%	48.0%	55.67%	44.33%	49.83%	
	-Equal Pref.	-	73.82%	80.7%	77.39%	77.3%	46.8%	43.6%	53.17%	41.7%	46.32%	
	-Warm Up	-	77.1%	80.32%	82.63%	80.02%	49.96%	47.4%	55.73%	44.18%	49.32%	
	MetaAligner-13B	403.44	76.5%	85.5%	86.0%	82.67%	68.5%	59.5%	64.0%	55.0%	61.75%	
LLaMA2-Chat-70B	Self-Refinement	-	70.48%	82.8%	68.91%	74.06%	49.95%	62.91%	60.77%	57.6%	55.05%	
	MetaAligner-7B	242.68	85.16%	89.42%	88.08%	87.55%	67.05%	63.72%	70.1%	54.7%	63.899	

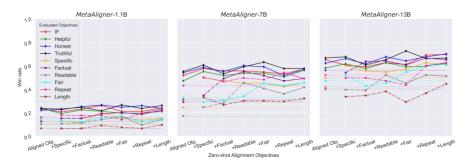


Figure 3: Zero-shot alignment on 6 unseen objectives. In the x-axis, "Aligned Obj." denotes the 4 supervised objectives ("o" markers), and "+" denotes further addition of an unseen objective ("o" markers). "*" denotes the win rates for the unseen objectives before all zero-shot alignments, "-." lines identify win rate fluctuations before alignment, and solid lines identify fluctuations after alignment.