Breaking the curse of dimensionality in structured density estimation NeurIPS 2024

Robert A. Vandermeulen, Wai Ming Tai, Bryon Aragam

TL;DR

- <u>Theoretically</u> how is it possible that some methods (e.g. neural networks) are so good at high dimensional data?
- Classic reasons:
 - Manifold hypothesis
 - Sparsity
 - Low-rank
 - Hierarchical assumptions
- This work: Conditional independence structure with graphical models (orthogonal to previous assumptions)
 - Effective dimension is related to a novel graph property

Nonparametric Density Estimation

- Problem: Given random vectors $X_1, X_2, ..., X_n \stackrel{iid}{\sim} p$
 - estimate p while making no (or very weak) assumptions on p
- If p is Lipschitz continuous the optimal rate for any estimator \hat{p}
 - $\sqrt[d+2]{n}$
- Can we improve this assuming a structured density?
 - Markov Random Field

Main Result

- Main result: if it is known that *p* satisfies the Markov property with respect to a graph *G* then there exists an estimator with the rate of $\frac{1}{\frac{2+r}{\sqrt{n}}}$
 - r(G) is a novel graph property we call "graph resilience"

For nonparametric density estimation with a Markovian assumption G, there exists an estimator where the effective dimension is r(G).

• $r(G) \le d$ •For many reasonable G, $r(G) \ll d$

Graph Resilience: Definition

- Based on what we call a "graph disintegration"
- A disintegration of a graph G is a nested sequence of subgraphs $G \supsetneq G_1 \supsetneq G_2 \cdots \supsetneq G_\ell = \emptyset$
 - G_{i+1} has exactly one vertex removed from each component of G_i
 - ℓ is called the "length" of a disintegration
- There are typically many possible disintegrations of different possible lengths
- The resilience of a graph G is the length of its shortest disintegration

Disintegration Example

(Null graph)

3

Disintegration Example

(Null graph)

r(G)=2.

Graph Resilience Bounds

- Path graph: O—
 - $r(G) \le \log_2(d) + 1$
- Complex sequential data, path graph where local dependence is expanded
- $r(G) \lessapprox \log_2(d)$ $k \times k$ Grid graph:
 - $r(G) \leq \sqrt{d}$, where $d = k \cdot k$
 - Complex spatial data: $r(G) \lesssim \sqrt{d}$