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• Theoretically how is it possible that some methods (e.g. neural 
networks) are so good at high dimensional data?


• Classic reasons:


• Manifold hypothesis


• Sparsity


• Low-rank


• Hierarchical assumptions


• This work: Conditional independence structure with graphical 
models (orthogonal to previous assumptions)


• Effective dimension is related to a novel graph property

TL;DR



• Problem: Given random vectors 


• estimate  while making no (or very weak) assumptions on 


• If  is Lipschitz continuous the optimal rate for any estimator 


•    


• Can we improve this assuming a structured density?


• Markov Random Field
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Nonparametric Density Estimation



• Main result: if it is known that  satisfies the Markov property 
with respect to a graph  then there exists an estimator with the 

rate of 


•  is a novel graph property we call “graph resilience”
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Main Result

For nonparametric density estimation with a Markovian assumption 
, there exists an estimator where the effective dimension is .G r(G)

•  
•For many reasonable , 

r(G) ≤ d
G r(G) ≪ d



• Based on what we call a “graph disintegration”


• A disintegration of a graph  is a nested sequence of subgraphs 



•  has exactly one vertex removed from each component 
of 


•  is called the “length” of a disintegration


• There are typically many possible disintegrations of different 
possible lengths


• The resilience of a graph  is the length of its shortest 
disintegration
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Graph Resilience: Definition



Disintegration Example

(Null graph)
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Disintegration Example

(Null graph)
2 steps in the 

shortest possible 
disintegration. Thus 

. r(G) = 2



• Path graph:


•  


• Complex sequential data, path graph where local dependence is 
expanded


• 


•  Grid graph:


• , where 


• Complex spatial data: 

r(G) ≤ log2(d) + 1

r(G) ⪅ log2(d)

k × k

r(G) ≤ d d = k ⋅ k

r(G) ⪅ d

Graph Resilience Bounds


