Breaking the curse of dimensionality in structured density estimation NeurIPS 2024

Robert A. Vandermeulen, Wai Ming Tai, Bryon Aragam

TL;DR

- **Theoretically** how is it possible that some methods (e.g. neural networks) are so good at high dimensional data?
- Classic reasons:
	- Manifold hypothesis
	- Sparsity
		- Low-rank
	- Hierarchical assumptions
- This work: Conditional independence structure with graphical models (orthogonal to previous assumptions)
	- Effective dimension is related to a novel graph property

Nonparametric Density Estimation

- Problem: Given random vectors $X_1, X_2, ..., X_n$ *iid* ∼ *p*
	- estimate p while making no (or very weak) assumptions on p
- If p is Lipschitz continuous the optimal rate for any estimator \hat{p}
	- $\frac{1}{d+2}\sqrt{n}$

1

- Can we improve this assuming a structured density?
	- Markov Random Field

Main Result

- Main result: if it is known that p satisfies the Markov property with respect to a graph G then there exists an estimator with the rate of 1 $2 + r/n$
	- $r(G)$ is a novel graph property we call "graph resilience"

For nonparametric density estimation with a Markovian assumption *G*, there exists an estimator where the effective dimension is $r(G)$.

 $\bullet r(G) \leq d$ \bullet For many reasonable G , $r(G) \ll d$

Graph Resilience: Definition

- Based on what we call a "graph disintegration"
- A disintegration of a graph G is a nested sequence of subgraphs *G* \supseteq *G*₁ \supseteq *G*₂ … \supseteq *G*_{*ℓ*} = ∅
	- G_{i+1} has exactly one vertex removed from each component of $G_{\vec{i}}$
	- ℓ is called the "length" of a disintegration
- There are typically many possible disintegrations of different possible lengths
- The resilience of a graph G is the length of its shortest disintegration

Disintegration Example

(Null graph)

3

Disintegration Example

(Null graph)

2 steps in the shortest possible disintegration. Thus

 $= 2.$

Graph Resilience Bounds

- Path graph: \bigcirc
	- $r(G) \le log_2(d) + 1$
- Complex sequential data, path graph where local dependence is expanded
	- $r(G) \lessapprox \log_2(d)$
- $k \times k$ Grid graph: $k \times k$
	- $r(G) \leq \sqrt{d}$, where $d = k \cdot k$
- Complex spatial data: $r(G) \lessapprox \sqrt{d}$