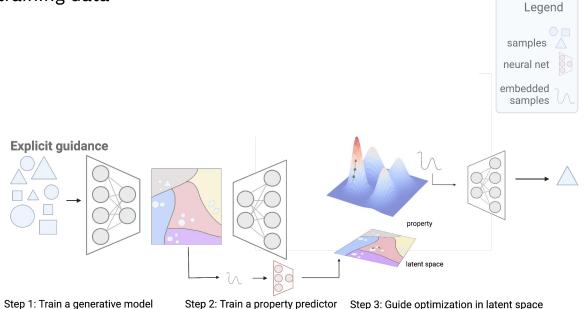
Implicit Guidance with PropEn: Match your data to follow the gradient

Natasa Tagasovska, Vlad Gligorijevic, Kyunghyun Cho, Andreas Loukas

Implicit vs Explicit guidance

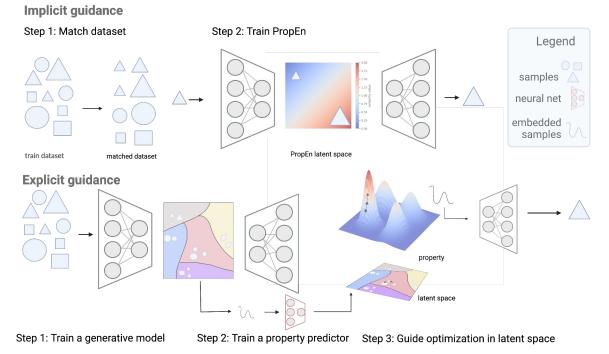
Explicit guidance requires:

- both a generative and discriminative model
- lot of training data



Implicit vs Explicit guidance

Implicit guidance <u>doesn't</u> require training a discriminative model and <u>works even in small</u> datasets!



Tagasovska, N., Gligorijević, V., Cho, K., & Loukas, A. (2024). Implicitly Guided Design with PropEn: Match your Data to Follow the Gradient.^A Member of the Rocke Group arXiv preprint arXiv:2405.18075.

3

Step 1: Match dataset

We view the group of samples with superior property values as the **treated** group and their lower value counterpart as the **control** group. This motivates us to construct a "matched dataset" for every (x, y) within D :

$$\mathcal{M} = \left\{ (x, x') \left| \begin{array}{c} x, x' \in \mathcal{D} \\ \|x' - x\|^2 \le \Delta_x, \ g(x') - g(x) \in (0, \Delta_y] \end{array} \right\},$$

Where Δ_x and Δ_y are predefined, positive thresholds.

One control - to - many treatments -> extending dataset by large order of magnitude

Example: x - coordinates of polygon, y - area of shape, dist: Euclidian x - antibody sequence, y - binding affinity, dist: edit/Levenstein x - portfolio of stocks, y - portfolio value/risk, dist: Jaccard

Step 2: Approximate the gradient

Once a dataset has been matched, we train a deep encoder-decoder network f_{θ} over M by minimizing the **matched reconstruction objective**:

$$\ell(f_{\theta}; \mathcal{M}) = \frac{1}{|\mathcal{M}|} \sum_{(x, x') \in \mathcal{M}} \ell(f_{\theta}(x), x')$$

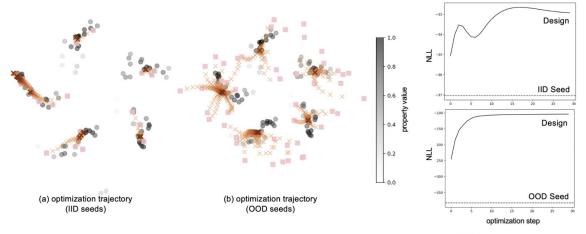
Where l is an appropriate loss for the data in question, such as an mean-squared error (MSE) or cross-entropy loss.

Theorem 1.

Let f^* be the optimal solution of the matched reconstruction objective with a sufficiently small Δ_x . For any point x in the matched dataset for which p is uniform within a ball of radius Δ_x , we have $f^*(x) \rightarrow c \nabla_g(x)$ for some positive constant c.

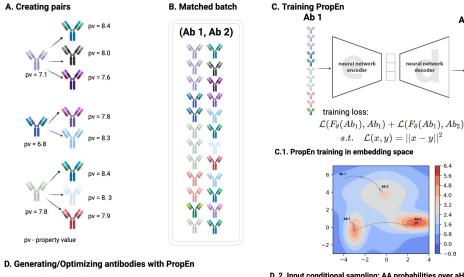
Step 3: Optimize designs with implicit guidance

At test time, we feed a seed design x_0 to PropEn, and read out an optimized design x_1 from the its output. We then proceed to iteratively re-feed the current design to PropEn until $f_{\rho}(x_1) = x_1$

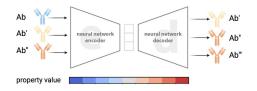


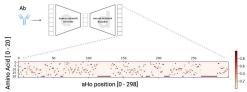
(c) NLL during optimization

PropEn for Antibodies



D. 1. Iterative Optimization





Ab 2

Y Y

30

neural network

decoder

6.4

5.6

4.8

- 4.0

3.2

- 2.4

- 1.6 - 0.8

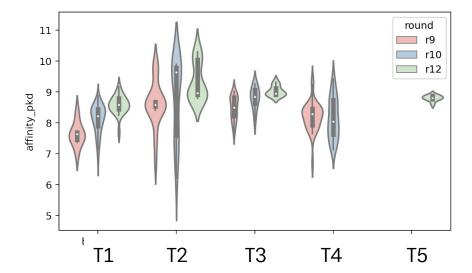
- 0.0

-0.8

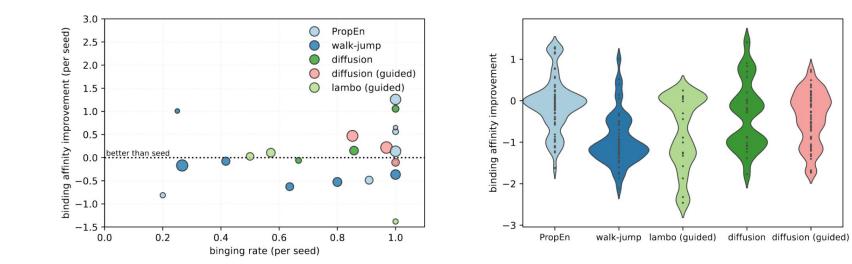
PropEn in LitL

Expression rate: ~95% Binding rate: ~90%

	Round 9	Round 10	Round 12
1x better	45/129	98/247	47/55
binders	(34.9%)	(40%)	(85.45%)
3x better	12/129	36/247 (15%)	31/55
binders	(10%)		(56.36%)
Highest	5.6	32.8	38.1
improvement	(x seed)	(x seed)	(x seed)



PropEn vs baselines R9



Variations of PropEn

Variations of PropEn

(PropEn) mix

- reconstruct both better design and the original

 $\ell(f,\hat{p}) = \mathbb{E}_{x \sim \hat{p}}[\mathbb{E}_{x' \sim \hat{\mu}_x}[\ell(x', f(x)) + \beta \,\ell(x, f(x))]]$

- lets us stay close to the seed
- increases diversity

(PropEn) x2x reconstruct only the design

xy2xy reconstruct the design and the property value;

- helps stabilizing training
- allows for controlled generation

Variations of PropEn

ablation study on toy data

(PropEn) mix reconstruct both better design and the original
(PropEn) x2x - reconstruct only the design
xy2xy - reconstruct the design and the property value;

Prescient

Design A Genentech Accelerator

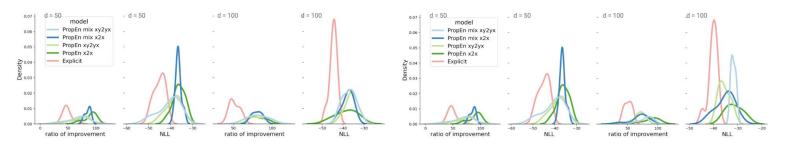
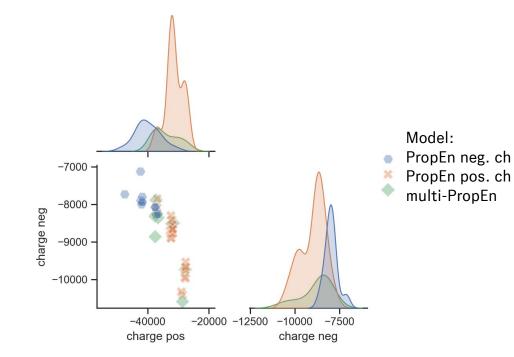


Figure 3: PropEn in toy examples in $d \in \{50, 100\}$, left side: 8-Gaussians, right side: pinwheel. Distribution of evaluation metrics from 10 repetitions of each experiment.

Multi-property enhancer

Instead of single property, we can optimize for a multivariate score of a molecule

Step 1: compute multivariate rank/score for multiple properties Step 2: match and optimize designs for the multivariate score with Propen



Summary and outlook

- → property enhancement method <u>without discriminator</u> for a single or multiple properties
- → data (modality) agnostic (<u>see our preprint</u> for example in aerodynamics engineering)
- → works well even in small medium data regimes
- → easy to train no hyperparameter tuning

