Implicit Guidance with PropEn:
Match your data to follow the gradient
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Implicit vs Explicit guidance
Explicit guidance requires:
- both a generative and discriminative model
- lot of training data
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Step 1: Train a generative model Step 2: Train a property predictor  Step 3: Guide optimization in latent space
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Implicit vs Explicit guidance

Implicit guidance doesn’t require training a discriminative model and works even in small datasets!

Implicit guidance

Step 1: Match dataset Step 2: Train PropEn
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Step 1: Match dataset
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Step 1: Match the dataset
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We view the group of samples with superior property values as the treated group and their lower

value counterpart as the control group. This motivates us to construct a “matched dataset” for
every (X, y) within D :

M={ (@)

x, 2’ € D
2 /
|z" — z[|* < Az, g(z") — g(z) € (0,4,] [’
Where A, and Ay are predefined, positive thresholds.
One control - to - many treatments -> extending dataset by large order of magnitude
Example: x - coordinates of polygon, y - area of shape, dist: Euclidian
X - antibody sequence, y - binding affinity, dist: edit/Levenstein

x - portfolio of stocks, y - portfolio value/risk, dist: Jaccard
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Step 2: Approximate the gradient

Once a dataset has been matched, we train a deep encoder-decoder network f, over M by minimizing
the matched reconstruction objective:

1 /
U(fo; M) = M| . :%;Mf(fo(x),w)

Where fis an appropriate loss for the data in question, such as an mean-squared error (MSE) or
cross-entropy loss.

Theorem 1.

Let f* be the optimal solution of the matched reconstruction objective with a sufficiently small
A . For any point x in the matched dataset for which p is uniform within a ball of radius A , we
have f*(x)éch(x) for some positive constant c.
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Step 3: Optimize designs with implicit guidance
At test time, we feed a seed design x, to PropEn, and read out an optimized design x, from the
its output. We then proceed to iteratively re-feed the current design to PropEn until f,(x,) =x,
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A. Creating pairs B. Matched batch C. Training PropEn
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D. Generating/Optimizing antibodies with PropEn

D. 2. Input conditional sampling: AA probabilities over aHo

D. 1. Iterative Optimization positions
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PropEn in LitL

Expression rate: ~95%
Binding rate: ~90%

Round 9 Round 10 Round 12
1x better 45/129 98/247 47/55
binders (34.9%) (40%) (85.45%)
3x better 12/129 36/247 (15%) 31/55
binders (10%) (56.36%)
Highest 5.6 32.8 38.1
improvement (x seed) (x seed) (x seed)
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PropEn vs baselines R9

binding affinity improvement (per seed)
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Variations of PropEn
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Variations of PropEn

(PropEn) mix
- reconstruct both better design and the original
U(f,D) = Bonp[Bornp, [6(2", f(2)) + BL(z, f(2))]
- lets us stay close to the seed

- increases diversity

(PropEn) x2x reconstruct only the design
xy2xy reconstruct the design and the property value;
- helps stabilizing training
- allows for controlled generation
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Variations of PropEn

= ablation study on toy data
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Figure 3: PropEn in toy examples in d € {50, 100}, left side: 8-Gaussians, right side: pinwheel

Distribution of evaluation metrics from 10 repetitions of each experiment
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Multi-property enhancer
- Instead of single property, we can optimize for a multivariate score of a molecule

Step 1: compute multivariate rank/score for multiple properties
Step 2: match and optimize designs for the multivariate score with Propen
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Summary and outlook
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property enhancement method without discriminator for a single or multiple properties
data (modality) agnostic (see our preprint for example in aerodynamics engineering)
works well even in small - medium data regimes

easy to train - no hyperparameter tuning
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