Semi-supervised learning: The provable benefits of unlabeled data for sparse Gaussian classification

Eyar Azar & Boaz Nadler

Weizmann Institute of Science

K ロ K K 御 K K W B K W B K W B B

 299

SSL: Observe L labeled samples $\{(\mathbf{x}_i, y_i)\}_{i=1}^L$ and n unlabeled samples $\{{\bm{x}}_i\}_{i=L}^{n+L}$ $i=L+1$

SSL: Observe L labeled samples $\{(\mathbf{x}_i, y_i)\}_{i=1}^L$ and n unlabeled samples $\{{\bm{x}}_i\}_{i=L}^{n+L}$ $i=L+1$

Often L small, n large.

SSL: Observe L labeled samples $\{(\mathbf{x}_i, y_i)\}_{i=1}^L$ and n unlabeled samples $\{{\bm{x}}_i\}_{i=L}^{n+L}$ $i=L+1$

Often L small, n large.

Many SSL algorithms

SSL: Observe L labeled samples $\{(\mathbf{x}_i, y_i)\}_{i=1}^L$ and n unlabeled samples $\{{\bm{x}}_i\}_{i=L}^{n+L}$ $i=L+1$

Often L small, n large.

Many SSL algorithms

Limited theory for SSL (clustering assumption, manifold assumption, etc.)

$$
y \sim \text{Unif} \{\pm 1\}, \quad \mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}_{y}, \mathbf{I}_{p})
$$

$$
y \sim \mathsf{Unif}\{\pm 1\}\,, \quad \mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}_{y}, \mathbf{I}_{p})
$$

$$
\Delta \mu = \mu_{+} - \mu_{-} \text{ is } k-\text{sparse}
$$

\n
$$
S = \text{supp}(\Delta \mu)
$$

\n
$$
\lambda = \|\Delta \mu\|_2^2/4 = O(1) \text{ - the separation}
$$

$$
y \sim \mathsf{Unif}\{\pm 1\}\,, \quad \mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}_{y}, \mathbf{I}_{p})
$$

$$
\Delta \mu = \mu_{+} - \mu_{-} \text{ is } k-\text{sparse}
$$

\n
$$
S = \text{supp}(\Delta \mu)
$$

\n
$$
\lambda = \|\Delta \mu\|_2^2 / 4 = O(1) \text{ - the separation}
$$

Goal: construct an accurate classifier

$$
y \sim \mathsf{Unif}\{\pm 1\}\,, \quad \mathbf{x} \sim \mathcal{N}(\boldsymbol{\mu}_{y}, \mathbf{I}_{p})
$$

$$
\Delta \mu = \mu_{+} - \mu_{-} \text{ is } k-\text{sparse}
$$

\n
$$
S = \text{supp}(\Delta \mu)
$$

\n
$$
\lambda = \|\Delta \mu\|_2^2/4 = O(1) \text{ - the separation}
$$

Goal: construct an accurate classifier Intermediate task: accurately recover S

SL: Scaling:
$$
L = \frac{2\beta k \log p}{\lambda}
$$
, $k \propto p^{\alpha}$

SL: Scaling:
$$
L = \frac{2\beta k \log p}{\lambda}
$$
, $k \propto p^{\alpha}$

[Ingster 99',Donoho and Jin 05']

Phase-transition of support recovery:

SL: Scaling:
$$
L = \frac{2\beta k \log p}{\lambda}
$$
, $k \propto p^{\alpha}$

[Ingster 99',Donoho and Jin 05']

[Semi-supervised learning: The provable benefits of unlabeled data for sparse Gaussian classification](#page-0-0)

Phase-transition of support recovery:

SL: Scaling:
$$
L = \frac{2\beta k \log p}{\lambda}
$$
, $k \propto p^{\alpha}$

[Ingster 99',Donoho and Jin 05']

Phase-transition of support recovery:

 S emi-supervised data for \mathbb{R} benefits of \mathbb{R}

Computational lower bound

Theorem (SSL computational lower bound, informal)

If $\beta < \frac{1}{2} - \alpha$ and $\gamma < 2$, then classification and variable selection are computationally hard.

Theoretical Guarantee for LSPCA

Theorem (informal)

If $\beta > 1 - \gamma \alpha$ then LSPCA with screening factor $\tilde{\beta} \in (1 - \gamma \alpha, \beta)$ recovers most of the support with high probability.

Simulation results: SSL vs. UL

 $L = 200$ fixed, increase *n*

Simulation results: SSL vs. SL

 $n = 1000$ fixed, increase L

Thank You !

 S emi-supervised data for \mathbb{R} benefits of unlabel \mathbb{R} of \mathbb{R}