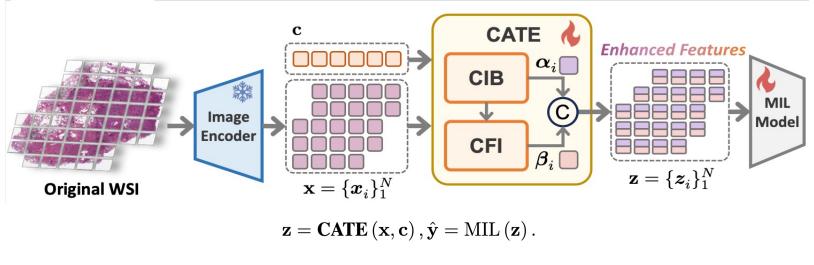

Free Lunch in Pathology Foundation Model: Task-specific Model Adaptation with Concept-Guided Feature Enhancement

Yanyan Huang¹, Weiqin Zhao¹, Yihang Chen¹, Yu Fu², Lequan Yu¹

¹The University of Hong Kong, ²Lanzhou University

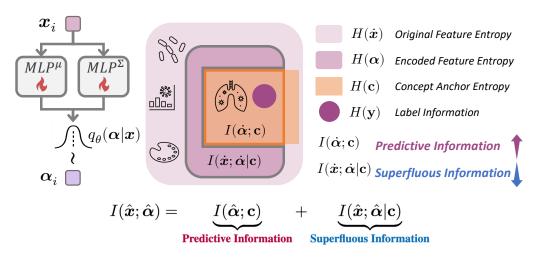
Motivation


• Can we undertake task-specific adaptation to further enhance pathology visual-language foundation model?

- The features extracted by the image encoder of a pathology VLM can include both **task**relevant information and **task-irrelevant elements**.
- We present **Concept Anchor-guided Task-specific Feature Enhancement (CATE)**, an adaptable paradigm that can boost the expressivity and discriminativeness of pathology foundation models for specific downstream tasks.

Overview

- **Objective**: Obtain the enhanced task-specific feature set **z** from the original feature **x** with the guidance of pre-extracted concepts anchors **c**.
- Task-specific concept anchors are generated by the text encoder of pathology VLM with prompt p, including class-specific concepts (e.g., subtyping classes) and class-agnostic concepts (e.g., adipose, connective, and normal tissues).

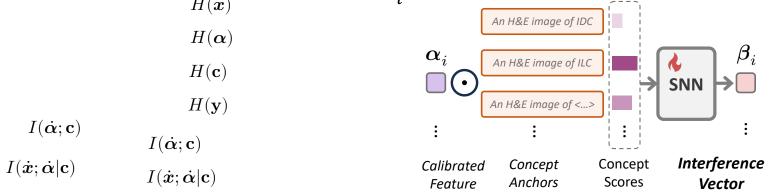


 $\boldsymbol{z}_{i} = \operatorname{Concat}\left[\boldsymbol{\alpha}_{i}, \boldsymbol{\beta}_{i}
ight] = \operatorname{Concat}\left[\operatorname{CIB}\left(\boldsymbol{x}_{i}, \mathbf{c}
ight), \operatorname{CFI}\left(\boldsymbol{x}_{i}, \mathbf{c}
ight)
ight].$

Concept-guided Information Bottleneck (CIB)

The mutual information between the representative subset of the original feature set and the corresponding enhanced feature set can be decomposed into **Predictive Information** and **Superfluous Information**.

- The predictive information can be maximized by maximizing the **InfoNCE** mutual information lower bound.
- The superfluous information can be minimized by utilizing Variational Information Bottleneck to minimize the mutual information between original feature set and corresponding enhanced feature set.



 $oldsymbol{eta}_i$

 $\mathbf{c} = \{\mathbf{c}^{\mathrm{cl}}, \mathbf{c}^{\mathrm{ag}}\}$

Concept-Feature Interference (CFI)

- Calculate the cosine similarity between each CIB encoded feature α_i and each class specific concept c_i^{cs} . $\mathbf{z} = \{z_i\}_1^N$
- A SNN layer is utilized to encode the similarity vector to interference vector $\boldsymbol{\beta}_i$ to be aligned with the calibrated feature $\boldsymbol{\alpha}_i$.

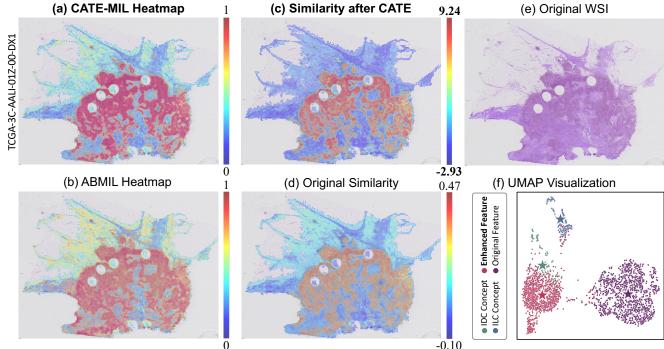
• The overall training objective can be represented as the combination of the cross entropy loss \mathcal{L}_{CE} , the predictive information maximization loss \mathcal{L}_{PIM} , and the superfluous information minimization loss \mathcal{L}_{SIM} .

$$\mathcal{L} = \mathcal{L}_{CE} + \lambda_P \mathcal{L}_{PIM} + \lambda_S \mathcal{L}_{SIM}$$

Experiments

 We selected several sites as IND data (in-domain, the testing and training data are from the same sites) and used data from other sites as OOD data (out-of-domain, the testing and training data are from different sites), and reported the testing performance on both IND and OOD data.

	CATE	BRCA $(N_{\text{IND}}=1)$								
Method		OOD-AUC	Gain	OOD-ACC	Gain	IND-AUC	Gain	IND-ACC	Gain	
ABMIL	×	$0.914 {\pm} 0.015$	N/A	0.852 ± 0.014	N/A	0.963 ± 0.044	N/A	0.888 ± 0.053	N/A	
CLAM	×	0.907 ± 0.017	N/A	0.802 ± 0.053	N/A	0.965 ± 0.049	N/A	0.888 ± 0.068	N/A	
DSMIL	×	$0.925 {\pm} 0.020$	N/A	$0.836 {\pm} 0.048$	N/A	0.969 ± 0.040	N/A	0.900 ± 0.080	N/A	
DTFD-MIL	×	$0.912 {\pm} 0.012$	N/A	0.858 ± 0.020	N/A	0.944 ± 0.058	N/A	0.894 ± 0.070	N/A	
TransMIL	×	$0.918 {\pm} 0.015$	N/A	$0.832 {\pm} 0.046$	N/A	0.969 ± 0.036	N/A	0.918 ± 0.067	N/A	
R^2T-MIL^{\dagger}	×	$0.901 {\pm} 0.027$	N/A	$0.816 {\pm} 0.051$	N/A	$0.965 {\pm} 0.033$	N/A	0.894 ± 0.022	N/A	
ABMIL	1	0.951±0.003	<u></u>	0.897 ± 0.026	↑5.28%	0.998±0.006	<u></u>	0.965±0.045	↑8.67%	
CLAM	1	0.951±0.005	↑4.85%	0.906±0.020	↑12.97%	0.998±0.006	↑3.42%	0.965±0.037	↑8.67%	
DSMIL	1	$0.936 {\pm} 0.007$	↑1.19%	0.866 ± 0.036	↑3.59%	0.990 ± 0.022	↑2.17%	0.959±0.044	↑6.56%	
DTFD-MIL	1	0.947 ± 0.004	↑3.84%	0.906±0.009	↑5.59%	$0.985 {\pm} 0.028$	↑4.34%	0.953 ± 0.042	↑6.60%	
TransMIL	1	$0.938{\scriptstyle\pm0.005}$	†2.18%	0.880 ± 0.023	<u></u> †5.77%	0.998±0.006	†2.99%	0.965 ±0.027	<u>†5.12%</u>	
Method	CATE	BRCA (N _{IND} =2)								
		OOD-AUC	Gain	OOD-ACC	Gain	IND-AUC	Gain	IND-ACC	Gain	
ABMIL	×	$0.899 {\pm} 0.035$	N/A	0.892 ± 0.019	N/A	0.967±0.019	N/A	0.941±0.024	N/A	
CLAM	X	$0.893 {\pm} 0.030$	N/A	$0.862 {\pm} 0.019$	N/A	0.960 ± 0.042	N/A	0.935 ± 0.027	N/A	
DSMIL	×	$0.881 {\pm} 0.032$	N/A	$0.852 {\pm} 0.028$	N/A	0.946 ± 0.057	N/A	0.940 ± 0.020	N/A	
DTFD-MIL	×	0.909 ± 0.019	N/A	0.878 ± 0.014	N/A	0.973 ± 0.023	N/A	0.945 ± 0.041	N/A	
TransMIL	×	0.904 ± 0.023	N/A	$0.852 {\pm} 0.090$	N/A	0.966 ± 0.031	N/A	0.936 ± 0.052	N/A	
R^2T-MIL^{\dagger}	×	$0.902 {\pm} 0.028$	N/A	0.873 ± 0.027	N/A	0.946 ± 0.060	N/A	0.929 ± 0.048	N/A	
ABMIL	1	$0.943 {\pm} 0.006$	↑4.89%	0.907±0.018	↑1.68%	0.981±0.018	↑1.45%	0.948 ± 0.030	↑0.74%	
CLAM	1	0.945 ± 0.008	↑5.82%	0.896 ± 0.030	<u></u>	0.976 ± 0.023	↑1.67%	0.938 ± 0.043	↑0.32%	
DSMIL	1	$\overline{0.919} \pm 0.015$	↑4.31%	0.869 ± 0.036	†2.00%	$0.958 {\pm} 0.051$	↑1.27%	0.949±0.024	↑0.96%	
DTFD-MIL	1	0.946±0.005	<u></u> ↑4.07%	0.887 ± 0.027	↑1.03%	0.977 ± 0.023	↑0.41%	0.946±0.036	↑0.11%	
TransMIL	1	$0.920{\pm}0.011$	↑1.77%	0.867 ± 0.046	↑1.76%	0.968 ± 0.045	↑0.21%	0.940 ± 0.026	↑0.43%	


Method		NSCLC ($(N_{\rm IND}=2)$		NSCLC (N _{IND} =4)				
	OOD-AUC	OOD-ACC	IND-AUC [#]	IND-ACC [#]	OOD-AUC	OOD-ACC	IND-AUC [#]	IND-ACC [#]	
ABMIL	$0.874 {\pm} 0.021$	$0.803 {\pm} 0.021$	$0.997 {\pm} 0.004$	$0.954{\pm}0.028$	0.951 ± 0.023	$0.883 {\pm} 0.029$	$0.974{\pm}0.018$	$0.910 {\pm} 0.036$	
CLAM	$0.875 {\pm} 0.020$	0.801 ± 0.021	$0.997 {\pm} 0.007$	$0.963 {\pm} 0.042$	0.931 ± 0.037	$0.870 {\pm} 0.036$	$0.977 {\pm} 0.023$	$0.926 {\pm} 0.048$	
DSMIL	$0.839 {\pm} 0.046$	0.764 ± 0.043	$0.993 {\pm} 0.004$	$0.963 {\pm} 0.028$	$0.934 {\pm} 0.019$	$0.864 {\pm} 0.026$	$0.974 {\pm} 0.013$	0.913 ± 0.042	
DTFD-MIL	0.903 ± 0.023	0.836 ± 0.026	$0.990 {\pm} 0.009$	$0.958 {\pm} 0.049$	$0.949 {\pm} 0.010$	0.893 ± 0.012	$0.981 {\pm} 0.012$	$0.918 {\pm} 0.040$	
TransMIL	$0.790 {\pm} 0.028$	$0.712 {\pm} 0.024$	$0.997 {\pm} 0.004$	$0.954 {\pm} 0.033$	$0.917 {\pm} 0.022$	$0.832 {\pm} 0.031$	$0.977 {\pm} 0.014$	0.923 ± 0.029	
R^2 T-MIL [†]	$0.739{\pm}0.088$	$0.690{\pm}0.075$	$0.999{\pm}0.002$	$0.971{\pm}0.036$	$0.892{\pm}0.041$	$0.800{\pm}0.059$	$0.977{\pm}0.018$	$0.916{\pm}0.045$	
CATE-MIL	0.945 ±0.016	0.840 ±0.043	$0.985{\pm}0.011$	$0.938{\pm}0.037$	0.969 ±0.003	0.906 ±0.011	$0.967{\pm}0.019$	$0.905 {\pm} 0.054$	
Method		RCC (1	V _{IND} =3)		RCC (N _{IND} =6)				
	OOD-AUC	OOD-ACC	IND-AUC [#]	IND-ACC#	OOD-AUC	OOD-ACC	IND-AUC#	IND-ACC#	
ABMIL	$0.973 {\pm} 0.005$	0.891 ± 0.017	$0.997 {\pm} 0.004$	$0.961 {\pm} 0.032$	$0.971 {\pm} 0.007$	$0.885 {\pm} 0.010$	$0.973 {\pm} 0.010$	0.897 ± 0.023	
CLAM	$0.972 {\pm} 0.004$	$0.893 {\pm} 0.012$	$0.991 {\pm} 0.005$	$0.961 {\pm} 0.032$	0.969 ± 0.009	$0.888 {\pm} 0.015$	$0.975 {\pm} 0.011$	$0.896 {\pm} 0.031$	
DSMIL	$0.977 {\pm} 0.002$	0.893 ± 0.010	$0.996 {\pm} 0.006$	$0.965 {\pm} 0.026$	$0.969 {\pm} 0.008$	$0.883 {\pm} 0.016$	$0.980 {\pm} 0.012$	0.901 ± 0.022	
DTFD-MIL	0.975 ± 0.003	0.897 ± 0.012	$0.996 {\pm} 0.004$	$0.943 {\pm} 0.046$	0.971 ± 0.007	0.893 ± 0.017	$0.974 {\pm} 0.012$	$0.878 {\pm} 0.022$	
TransMIL	0.961 ± 0.010	0.864 ± 0.022	$0.994 {\pm} 0.004$	$0.930 {\pm} 0.030$	0.947 ± 0.017	$0.828 {\pm} 0.037$	$0.975 {\pm} 0.013$	$0.894 {\pm} 0.027$	
R^2 T-MIL [†]	$0.956{\pm}0.018$	$0.847 {\pm} 0.022$	$0.991{\pm}0.008$	$0.936{\pm}0.030$	$0.932{\pm}0.020$	$0.803 {\pm} 0.048$	$0.974{\pm}0.012$	$0.897 {\pm} 0.029$	
CATE-MIL	0.983 ±0.002	0.911 ±0.018	$0.989{\pm}0.009$	$0.944{\pm}0.031$	0.979 ±0.007	0.905 ±0.017	$0.963{\pm}0.011$	$0.882{\pm}0.032$	

* The best results are highlighted in **bold**, and the second-best results are <u>underlined</u>.

[†] R²T-MIL is designed for feature re-embedding that utilize ABMIL as base MIL model.

Visualization

- Attention heatmap comparisons reveal that CATE-MIL focuses more intensely on cancerous regions, with a clearer delineation between high and low attention areas.
- The enhanced similarity in cancerous regions is significantly higher than in original features.
- CATE could effectively align features with task-relevant concepts and enhance task-relevant information.

Thank You!

