FlowDCN: Exploring DCN-like Architectures for Fast Image Generation with Arbitrary Resolution

Github

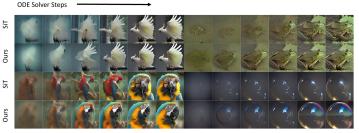
Shuai Wang, Zexian Li, Tianhui Song, Xubin Li, Tiezheng Ge, Bo Zheng, Limin Wang

Selected arbitrary-resolution samples (384x384, 224x448, 448x224, 256x256)

Motivations

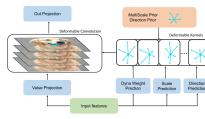
Arbitrary-resolution image generation still remains a challenging task in AIGC, as it requires handling varying resolutions and aspect ratios while maintaining high visual quality. Existing transformer-based diffusion methods suffer from quadratic computation cost and limited resolution extrapolation capabilities, making them less effective for this task. In this paper, we propose FlowDCN, a purely convolution-based generative model with linear time and memory complexity, that can efficiently generate highquality images at arbitrary resolutions. Equipped with a new design of learnable group-wise deformable convolution block, our FlowDCN yields higher flexibility and capability to handle different resolutions

- Explore Pure DCN-like arch for image generation
- DCN consumes Linear Complexity compared to Attention
- DCN can handle Aribitrary Resolution Generation

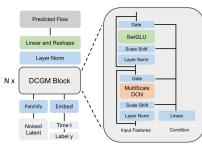


samples from our FlowDCN- XL/2 and SiT-XL/2 with Euler ODE solver under 2, 3, 4, 5, 8, 10 steps using the same noise

Method-GroupwiseMSDCN

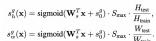


Method-FlowDCN



Method-Sampling Arbitrary Resolution

Smax Adjustment : Adjust Smax with corresponding resolution



Model	FLOPs (G)	Params (M)	Latency(ms)	FID↓	sFID↓	IS↑
SiT-S/2	6.06	33	0.026	57.64	9.05	24.78
SiT-S/2 [†]	6.06	33	0.026	57.9	8.72	24.64
FlowDCN-S/2	4.36 (-28%)	30.3 (-8.1%)	0.027	54.6	8.8	26.4
SiT-B/2	23.01	130	0.084	33.5	6.46	43.71
SiT-B/2 [†]	23.01	130	0.084	37.3	6.55	40.6
FlowDCN-B/2	17.87 (-22%)		0.076	28.5	6.09	51
w/o RMS & SwiGLU	17.88 (-22%)	120 (-7.6%)	0.072	29.1	6.13	50.4
DiT-L/2	80.71	458	0.291	23.3	-	-
SiT-L/2	80.71	458	0.291	18.8	5.29	72.02
FlowDCN-L/2	63.51 (- 21%)	421 (-8.0%)	0.254	13.8	4.69	85
DiT-XL/2	118.64	675	0.387	19.5	-	-
SiT-XL/2	118.64	675	0.387	17.2	5.07	76.52
FlowDCN-XL/2	93.24 (-21%)	618 (- 8.4%)	0.303	11.3	4.85	97

Arxiv

Different from DCNv3/DCNv4	ImageNet 25
We Decouple deformable filed into	Generative M
Direction and Scales	ADM-U [10] CDM [39]
$s^{g}(\mathbf{x}) = S_{\max} * \text{sigmoid}(\mathbf{W}_{s}^{T}\mathbf{x} + s_{0}^{g}),$	LDM-4 [40] DiT-XL/2 [12

Class-Conditional ImageNet 512×512

 $p = p_0 + s^g(\mathbf{x}) * (p_k + \Delta p_k(\mathbf{x})).$

• Initianlize s_0^g with following equation \overline{ADM}_{LDM} U-Vi DiT-2 Diffu SiT-X FiT-X to achieve Groupswise MultiScale $s_0^{g+1} = \log(\frac{g}{G-a})$

ImageNet 256×256 Benchmark								
Generative Models	Long Residuals	Total Images(M)	Total GFLOPs	FID ↓	sFID ↓	IS ↑	P↑	R ↑
ADM-U [10]	1	507	3.76×10^{11}	7.49	5.13	127.49	0.72	0.63
CDM [39]	1	-	-	4.88	-	158.71	-	-
LDM-4 [40]	1	213	2.22×10^{10}	10.56	-	103.49	0.71	0.62
DiT-XL/2 [12]	X	1792	$2.13 imes 10^{11}$	9.62	6.85	121.50	0.67	0.67
DiffusionSSM-XL[16]	X	660	$1.85 imes 10^{11}$	9.07	5.52	118.32	0.69	0.64
SiT-XL/2[23]	X	1792	$2.13 imes 10^{11}$	8.61	6.32	131.65	0.68	0.67
FlowDCN-XL/2	×	384	$3.57 imes 10^{10}$	8.36	5.39	122.5	0.69	0.65
Classifier-free Guidance								
ADM-U[10]	 ✓ 	507	$3.76 imes 10^{12}$	3.60	-	247.67	0.87	0.48
LDM-4 [40]	1	213	$2.22 imes 10^{10}$	3.95	-	178.22	0.81	0.55
U-ViT-H/2 [11]	1	512	$6.81 imes 10^{10}$	2.29	-	247.67	0.87	0.48
DiT-XL/2 [12]	X	1792	2.13×10^{11}	2.27	4.60	278.24	0.83	0.57
DiffusionSSM-XL [16]	X	660	1.85×10^{11}	2.28	4.49	259.13	0.86	0.56
SiT-XL/2[23]	X	1792	$2.13 imes 10^{11}$	2.06	4.50	270.27	0.82	0.59
FiT-XL/2[18]	X	450	-	4.27	9.99	249.72		
FlowDCN-XL/2 (cfg=1.375; ODE)		384	$3.57 imes 10^{10}$	2.13	4.30	243.46		
FlowDCN-XL/2 (cfg=1.375; SDE)	X	384	$3.57 imes 10^{10}$	2.08	4.38	257.53		
FlowDCN-XL/2 (cfg=1.375; ODE)		486	$4.52 imes 10^{10}$	2.01	4.33	254.36		
FlowDCN-XL/2 (cfg=1.375; SDE)	X	486	$4.52 imes 10^{10}$	2.00	4.37	263.16	0.82	0.58

The basic block:

 $x_t = tx + (1-t)\epsilon.$

 $v_t(x_t) = x - \epsilon.$

 $\mathbf{x}_1 = \mathbf{x} + \text{AdaLN}(\mathbf{y}, \mathbf{t}, \text{MultiScale-DCN}(\mathbf{x})),$ $\mathbf{x}_2 = \mathbf{x}_1 + \text{AdaLN}(\mathbf{y}, \mathbf{t}, \text{SwiGLU}(\mathbf{x}_1)).$

Training with rectified flow:

 $\mathcal{L}_v = \int^1 \mathbb{E}[\|v_\theta(x_t, t) - v_t(x_t)\|^2] dt.$

Class-Conditional imageret 512×512					
Model	FID↓	sFID↓	IS↑	Precision [↑]	Recall↑
BigGAN-deep [6]	8.43	8.13	177.90	0.88	0.29
StyleGAN-XL [7]	2.41	4.06	267.75	0.77	0.52
ADM [10]	23.24	10.19	58.06	0.73	0.60
ADM-U [10]	9.96	5.62	121.78	0.75	0.64
ADM-G [10]	7.72	6.57	172.71	0.87	0.42
ADM-G, ADM-U	3.85	5.86	221.72	0.84	0.53
DiT-XL/2 [12]	12.03	7.12	105.25	0.75	0.64
DiT-XL/2-G [12] (cfg=1.50)	3.04	5.02	240.82	0.84	0.54
SiT-XL/2-G [23] (cfg=1.50)	2.62	4.18	252.21	0.84	0.57
FlowDCN-XL/2(cfg=1.375, ODE-50)	2.76	5.29	240.6	0.83	0.51
FlowDCN-XL/2(cfg=1.375, SDE-250)	2.44	4.53	252.8	0.84	0.54

Method	25	6×256 (1	:1)	32	320×320 (1:1)			224×448 (1:2)			160×480 (1:3)		
Method	FID↓	sFID↓	IS↑	FID↓	sFID↓	IS↑	FID↓	sFID↓	IS↑	FID↓	sFID↓	IS↑	
DiT-B	44.83	8.49	32.05	95.47	108.68	18.38	109.1	110.71	14.00	143.8	122.81	8.93	
DiT-B + EI	44.83	8.49	32.05	81.48	62.25	20.97	133.2	72.53	11.11	160.4	93.91	7.30	
DiT-B + PI	44.83	8.49	32.05	72.47	54.02	24.15	133.4	70.29	11.73	156.5	93.80	7.80	
FiT-B	36.36	11.08	40.69	61.35	30.71	31.01	44.67	24.09	37.1	56.81	22.07	25.25	
FiT-B + VisionYaRN	36.36	11.08	40.69	44.76	38.04	44.70	41.92	42.79	45.87	62.84	44.82	27.84	
FiT-B + VisionNTK	36.36	11.08	40.69	57.31	31.31	33.97	43.84	26.25	39.22	56.76	24.18	26.40	
FlowDCN-B	28.5	6.09	51	34.4	27.2	52.2	71.7	62.0	23.7	211	111	5.83	
FlowDCN-B (+VAR)	23.6	7.72	62.8	29.1	15.8	69.5	31.4	17.0	62.4	44.7	17.8	35.8	
+ Smax Adjust	23.6	7.72	62.8	30.7	19.4	68.5	37.8	22.8	54.4	53.3	22.6	31.5	

Presenter: WangShuai

- Motivations
- Methods
- Experiments
- Visualizations

FlowDCN: Exploring DCN-like Architectures for Fast Image Generation with Arbitrary Resolution

Shuai WangZexian LiNanjing UniversityAlibaba Group

Tianhui SongXubin LiNanjing UniversityAlibaba Group

Tiezheng Ge p Alibaba Group

Bo Zheng Alibaba Group Limin Wang ⊠ Nanjing University, Shanghai AI Lab

Figure 1: Selected arbitrary-resolution samples (384x384, 224x448, 448x224, 256x256). Generated from a single FlowDCN-XL/2 model trained on ImageNet 256×256 resolution with CFG = 4.0.

Direct Motivation

- DCN-like arch models are much powerful than others (Generally)
- DCN-like arch owns relatively higher dynamics compared to CNN
- DCN-like arch enjoys relatively sparse pattern compared to Transformer

Table from DCNv3/DCNv4

Model	Size	Scale	Acc	Throughput
Swin-T	29M	224 ²	81.3	1989 / 3619
ConvNeXt-T	29M	224^{2}	82.1	2485 / 4305
InternImage-T	30M	224^{2}	83.5	1409 / 1746
FlashInternImage-T	30M	224^{2}	83.6	2316/3154 (+64%/+80%)
Swin-S	50M	224^{2}	83.0	1167/2000
ConvNeXt-S	50M	224^{2}	83.1	1645/2538
InternImage-S	50M	224^{2}	84.2	1044/1321
FlashInternImage-S	50M	224^{2}	84.4	1625 / 2396
Swin-B	88M	224^{2}	83.5	934 / 1741
ConvNeXt-B	89M	224^{2}	83.8	1241 / 1888
InternImage-B	97M	224^{2}	84.9	779 / 1030
FlashInternImage-B	97M	224^{2}	84.9	1174 / 1816 (+51%/ + 76%)
Swin-L	197M	384 ²	87.3	206 / 301
ConvNeXt-L	198M	384^{2}	87.5	252/436
InternImage-L	223M	384^{2}	87.7	158/214
ConvNeXt-XL	350M	384^{2}	87.8	170 / 299
InternImage-XL	335M	384^{2}	88.0	125 / 174
FlashInternImage-L	223M	384 ²	88.1	248 / 401 (+57%/ + 87%)

Table 4. Image classification performance on ImageNet-1K. We show relative speedup between FlashInternImage w/ DCNv4 and its InternImage counterparts. DCNv4 significantly improves the speed while shows state-of-the-art performance.

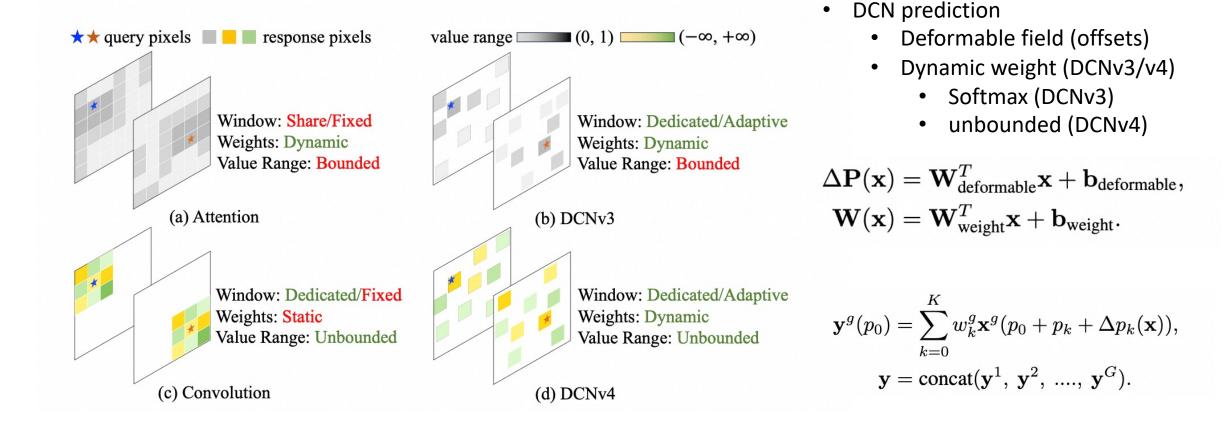
]	Mask H	R-CNN	1
Model	#param	FPS	1	X	$3 \times -$	+MS
			AP^{b}	AP^{m}	AP^{b}	AP^{m}
Swin-T	48M	66 / 106	42.7	39.3	46.0	41.6
ConvNeXt-T	48M	78/113	44.2	40.1	46.2	41.7
InternImage-T	49M	54/69	47.2	42.5	49.1	43.7
FlashInternImage-T	49M	72 / 102	48.0	43.1	49.5	44.0
Swin-S	69M	45 / 77	44.8	40.9	48.2	43.2
ConvNeXt-S	70M	54/83	45.4	41.8	47.9	42.9
InternImage-S	69M	44/56	47.8	43.3	49.7	44.5
FlashInternImage-S	69M	57/83	49.2	44.0	50.5	44.9
Swin-B	107M	33/59	46.9	42.3	48.6	43.3
ConvNeXt-B	108M	43 / 70	47.0	42.7	48.5	43.5
InternImage-B	115M	33/ 43	48.8	44.0	50.3	44.8
FlashInternImage-B	115M	44 / 67	50.1	44.5	50.6	45.4

Table from MambaOut

Table 2: Performance of object detection and instance segmentation on COCO with Mask **R-CNN.** The MACs are measured with input size of 800×1280 .

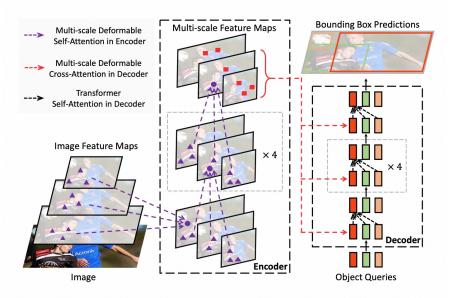
Backbone	Token	Param	MAC		Ma	ask R-CNN	$1 \times \text{sche}$	dule	
Dackbolle	Mixing Type	(M)	(G)	AP ^b	AP_{50}^b	AP_{75}^{b}	AP^m	AP ₅₀ ^m	AP_7^m
ConvNeXt-T [49]	Conv	48	262	44.2	66.6	48.3	40.1	63.3	42.8
FocalNet-T [89]	Conv	49	268	46.1	68.2	50.6	41.5	65.1	44.5
Swin-T [51]	Attn	48	267	42.7	65.2	46.8	39.3	62.2	42.2
ViT-Adapter-S [10]	Attn	48	403	44.7	65.8	48.3	39.9	62.5	42.8
CSWin-T [22]	Attn	42	279	46.7	68.6	51.3	42.2	65.6	45.4
PVTv2-B2 [80]	Conv + Attn	45	309	45.3	67.1	49.6	41.2	64.2	44.4
SG-Former-S [65]	Conv + Attn	41	-	47.4	69.0	52.0	42.6	65.9	46.0
TransNeXt-Tiny [69]	Conv + Attn	48	356	49.9	71.5	54.9	44.6	68.6	48.
VMamba-T [50]	$\overline{\text{Conv}} + \overline{\text{SSM}}$	42	286	46.5	68.5	- 50.7 -	42.1	65.5	45.
LocalVMamba-T [37]	Conv + SSM	45	291	46.7	68.7	50.8	42.2	65.7	45.5
EfficientVMamba-B [58]	Conv + SSM	53	252	43.7	66.2	47.9	40.2	63.3	42.9
VMambaV9-T [50]	Conv + SSM	50	270	47.4	69.5	52.0	42.7	66.3	46.0
PlainMamba-L1 [88]	Conv + SSM	31	388	44.1	64.8	47.9	39.1	61.6	41.
MambaOut-Tiny	Conv	43	262	45.1	67.3	49.6	41.0	64.1	44.

• Revisit DCN module



• Improve DCN module with MultiScale

- Multiscale is pivotal for CV tasks
- Deformable-DETR employs FPN (explict) as MultiScale feature
- Retentive Net uses different gamms decay rates for different heads



2.2 Gated Multi-Scale Retention

We use $h = \frac{d_{\text{model}}}{d}$ retention heads in each layer, where d is the head dimension. The heads use different parameter matrices $W_Q, W_K, W_V \in \mathbb{R}^{d \times d}$. Moreover, **m**ulti-scale **r**etention (MSR) assigns different γ for each head. For simplicity, we set γ identical among different layers and keep them fixed. In addition, we add a swish gate [HG16, RZL17] to increase the non-linearity of retention layers. Formally, given input X, we define the layer as:

$$\gamma = 1 - 2^{-5 - \operatorname{arange}(0,h)} \in \mathbb{R}^{h}$$

$$\operatorname{head}_{i} = \operatorname{Retention}(X, \gamma_{i})$$

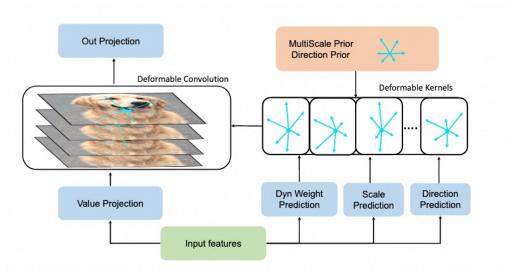
$$Y = \operatorname{GroupNorm}_{h}(\operatorname{Concat}(\operatorname{head}_{1}, \cdots, \operatorname{head}_{h}))$$

$$\operatorname{MSR}(X) = (\operatorname{swish}(XW_{G}) \odot Y)W_{O}$$
(8)

where $W_G, W_O \in \mathbb{R}^{d_{\text{model}} \times d_{\text{model}}}$ are learnable parameters, and GroupNorm [WH18] normalizes the output of each head, following SubLN proposed in [SPP⁺19]. Notice that the heads use multiple γ scales, which results in different variance statistics. So we normalize the head outputs separately.

The pseudocode of retention is summarized in Figure 4.

• Groupwise MultiScale DCN module



(b) **MultiScale DCN Block.** Dynamic weight and scale& direction deformable field are predicted from input features, then merged with priors to form the deformable kernels to extract features.

- Decouple deformable field
 - Into Directions
 - Into Scales

$$s(\mathbf{x}) = S_{\max} * \operatorname{sigmoid}(\mathbf{W}_s^T \mathbf{x}),$$

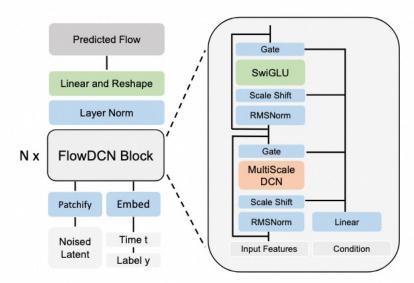
 $p = p_0 + s(\mathbf{x}) * (p_k + \Delta p_k(\mathbf{x})),$

• Introducing scale priors groupwise

$$s_0^{g+1} = \log(rac{g}{G-g}).$$

 $s^g(\mathbf{x}) = S_{\max} * \operatorname{sigmoid}(\mathbf{W}_s^T \mathbf{x} + s_0^g),$
 $p = p_0 + s^g(\mathbf{x}) * (p_k + \Delta p_k(\mathbf{x})).$

• Experiments on ImageNet



(a) **FlowDCN Architecture.** Our FlowDCN consists of stacked MultiScaleDCN blocks and SwiGLU blocks. We also employ RMSNorm to stabilize training.

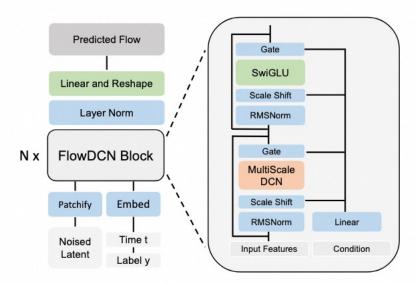
ImageNet 256×256 Benchmark								
Generative Models	Long	Total	Total	$ $ FID \downarrow	sFID \downarrow	IS ↑	P↑	R 1
Generative models	Residuals	Images(M)	GFLOPs					
ADM-U [10]	1	507	3.76×10^{11}	7.49	5.13	127.49	0.72	0.6
CDM [39]	1	-	-	4.88	-	158.71	-	-
LDM-4 [40]	1	213	$2.22 imes 10^{10}$	10.56	-	103.49	0.71	0.6
DiT-XL/2 [12]	X	1792	$2.13 imes 10^{11}$	9.62	6.85	121.50	0.67	0.6
DiffusionSSM-XL[16]	X	660	$1.85 imes 10^{11}$	9.07	5.52	118.32	0.69	0.64
SiT-XL/2[23]	X	1792	$2.13 imes 10^{11}$	8.61	6.32	131.65	0.68	0.6
FlowDCN-XL/2	×	384	$3.57 imes \mathbf{10^{10}}$	8.36	5.39	122.5	0.69	0.6
Classifier-free Guidance								
ADM-U[10]	 ✓ 	507	3.76×10^{12}	3.60	-	247.67	0.87	0.4
LDM-4 [40]	1	213	2.22×10^{10}	3.95	-	178.22	0.81	0.5
U-ViT-H/2 [11]	1	512	$6.81 imes 10^{10}$	2.29	-	247.67	0.87	0.4
DiT-XL/2 [12]	X	1792	$2.13 imes 10^{11}$	2.27	4.60	278.24	0.83	0.5
DiffusionSSM-XL [16]	X	660	$1.85 imes 10^{11}$	2.28	4.49	259.13	0.86	0.5
SiT-XL/2[23]	X	1792	$2.13 imes 10^{11}$	2.06	4.50	270.27	0.82	0.5
FiT-XL/2[18]	X	450	-	4.27	9.99	249.72	0.84	0.5
FlowDCN-XL/2 (cfg=1.375; ODE)	X	384	$3.57 imes \mathbf{10^{10}}$	2.13	4.30	243.46	0.81	0.5
FlowDCN-XL/2 (cfg=1.375; SDE)	X	384	$3.57 imes \mathbf{10^{10}}$	2.08	4.38	257.53	0.82	0.5
FlowDCN-XL/2 (cfg=1.375; ODE)	X	486	$4.52 imes 10^{10}$	2.01	4.33	254.36	0.81	0.5
FlowDCN-XL/2 (cfg=1.375; SDE)	X	486	$4.52\times \mathbf{10^{10}}$	2.00	4.37	263.16	0.82	0.5

Table 4: Image generation quality evaluation of and existing approaches on ImageNet 256×256 . Total images by training steps \times batch size as reported, and total GFLOPs by Total Images \times GFLOPs/Image. P refers to Precision and R refers to Recall.

Class-Conditional ImageNet $512{\times}512$					
Model	FID↓	sFID↓	IS↑	Precision↑	Recall↑
BigGAN-deep [6]	8.43	8.13	177.90	0.88	0.29
StyleGAN-XL [7]	2.41	4.06	267.75	0.77	0.52
ADM [10]	23.24	10.19	58.06	0.73	0.60
ADM-U [10]	9.96	5.62	121.78	0.75	0.64
ADM-G [10]	7.72	6.57	172.71	0.87	0.42
ADM-G, ADM-U	3.85	5.86	221.72	0.84	0.53
DiT-XL/2 [12]	12.03	7.12	105.25	0.75	0.64
DiT-XL/2-G [12] (cfg=1.50)	3.04	5.02	240.82	0.84	0.54
FlowDCN-XL/2(cfg=1.375, ODE-50)	2.76	5.29	240.6	0.83	0.51
FlowDCN-XL/2(cfg=1.375, SDE-250)	2.44	4.53	252.8	0.84	0.54

Table 5: Benchmarking class-conditional image generation on ImageNet 512×512 . Our FlowDCN-XL/2 is fine-tuned for 100k steps from the same model trained on 256×256 resolution setting of 1.5M steps

• Experiments on ImageNet



(a) **FlowDCN Architecture.** Our FlowDCN consists of stacked MultiScaleDCN blocks and SwiGLU blocks. We also employ RMSNorm to stabilize training.

Model	FLOPs (G)	Params (M)	Latency(ms)	FID↓	sFID↓	IS↑
SiT-S/2	6.06	33	0.026	57.64	9.05	24.78
SiT-S/2 [†]	6.06	33	0.026	57.9	8.72	24.64
FlowDCN-S/2	4.36 (-28%)	30.3 (-8.1%)	0.027	54.6	8.8	26.4
SiT-B/2	23.01	130	0.084	33.5	6.46	43.71
SiT-B/2 [†]	23.01	130	0.084	37.3	6.55	40.6
FlowDCN-B/2	17.87 (-22%)	120 (-7.6%)	0.076	28.5	6.09	51
w/o RMS & SwiGLU	17.88 (-22%)	120 (-7.6%)	0.072	29.1	6.13	50.4
DiT-L/2	80.71	458	0.291	23.3	_	-
SiT-L/2	80.71	458	0.291	18.8	5.29	72.02
FlowDCN-L/2	63.51 (- 21%)	421 (-8.0%)	0.254	13.8	4.69	85
DiT-XL/2	118.64	675	0.387	19.5	-	-
SiT-XL/2	118.64	675	0.387	17.2	5.07	76.52
FlowDCN-XL/2	93.24 (-21%)	618 (-8.4%)	0.303	11.3	4.85	97

Table 3: Image generation metrics comparisons between SiT [23], DiT [12] under 400k training steps budgets. All metrics are calculated from the sampled 50k images under 250 Euler SDE sampling steps without classifier-free guidance. †: reproduced result. Latency(ms) is the 1-NFE latency and collected from Nvidia A10 GPU with 16 batchsize under float32.

• Visualizations on ImageNet

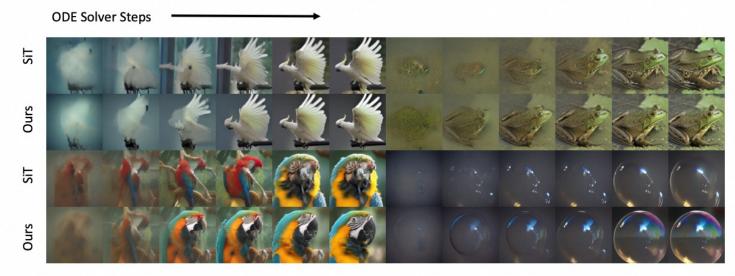
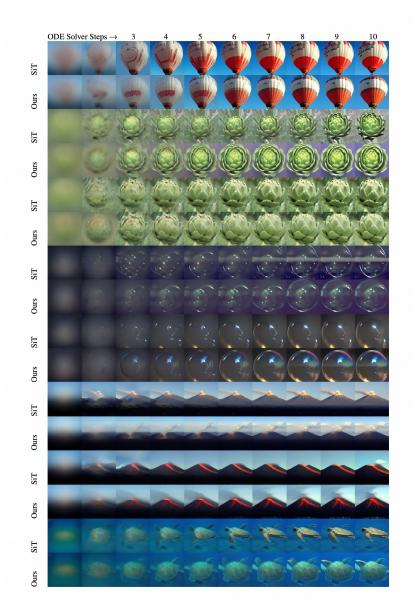


Figure 3: Visualization Comparison with SiT. *Best viewed zoomed-in*. We sample both our FlowDCN-XL/2 and SiT-XL/2 with Euler ODE solver under 2, 3, 4, 5, 8, 10 steps using the same latent noise. At the fewer steps sampling scenery, our FlowDCN generates slightly clearer and higher-quality images.



Resolution Extension

$$s^{g}(\mathbf{x}) = S_{\max} * \text{sigmoid}(\mathbf{W}_{s}^{T}\mathbf{x} + s_{0}^{g}),$$
$$p = p_{0} + s^{g}(\mathbf{x}) * (p_{k} + \Delta p_{k}(\mathbf{x})).$$

Adjust S_{max} to match inference resolution. As shown in Eq. (10), S_{max} controls the maximum sampling range in multiscale deformable convolution. As discussed in Sec. 3.1, we treat it as a resolution-dependent hyperparameter. It is straightforward to observe that scaling S_{max} with the relative aspect ratio between train size and inference size could match the reception field between train and inference:

$$s_{h}^{g}(\mathbf{x}) = \text{sigmoid}(\mathbf{W}_{s}^{T}\mathbf{x} + s_{0}^{g}) \cdot S_{\text{max}} \cdot \frac{H_{\text{test}}}{H_{\text{train}}}$$
(15)
$$s_{w}^{g}(\mathbf{x}) = \text{sigmoid}(\mathbf{W}_{s}^{T}\mathbf{x} + s_{0}^{g}) \cdot S_{\text{max}} \cdot \frac{W_{\text{test}}}{W_{\text{train}}}$$
(16)

with S_{max} Adjustment

without S_{\max} Adjustment

Figure 4: Visualization Comparison about S_{max} Adjustment. Here are the 512×512 , 256×512 and 512×256 , three type resolution images. We employ the same latent noise as start, sampling with Euler SDE solver for 250 steps. With S_{max} Adjustment, sampled images consistently looks better.

Method	25	6×256 (1	:1)	32	0×320 (1	:1)	22	4×448 (1	:2)	16	0×480 (1	:3)
Method	FID↓	sFID↓	IS↑	FID↓	sFID↓	IS↑	FID↓	sFID↓	IS↑	FID↓	sFID↓	IS↑
DiT-B	44.83	8.49	32.05	95.47	108.68	18.38	109.1	110.71	14.00	143.8	122.81	8.93
DiT-B + EI	44.83	8.49	32.05	81.48	62.25	20.97	133.2	72.53	11.11	160.4	93.91	7.30
DiT-B + PI	44.83	8.49	32.05	72.47	54.02	24.15	133.4	70.29	11.73	156.5	93.80	7.80
FiT-B	36.36	11.08	40.69	61.35	30.71	31.01	44.67	24.09	37.1	56.81	22.07	25.2
FiT-B + VisionYaRN	36.36	11.08	40.69	44.76	38.04	44.70	41.92	42.79	45.87	62.84	44.82	27.8
FiT-B + VisionNTK	36.36	11.08	40.69	57.31	31.31	33.97	43.84	26.25	39.22	56.76	24.18	26.4
FlowDCN-B	28.5	6.09	51	34.4	27.2	52.2	71.7	62.0	23.7	211	111	5.83
FlowDCN-B (+VAR)	23.6	7.72	62.8	29.1	15.8	69.5	31.4	17.0	62.4	44.7	17.8	35.
+ S _{max} Adjust	23.6	7.72	62.8	30.7	19.4	68.5	37.8	22.8	54.4	53.3	22.6	31.

Table 9: **Benchmarking resolution extrapolations on ImageNet with various aspect ratio training**. VAR indicates various aspect ratios training. We follow the same evaluation pipeline of FiT without using CFG.

• Resolution Extension

$$s^{g}(\mathbf{x}) = S_{\max} * \operatorname{sigmoid}(\mathbf{W}_{s}^{T}\mathbf{x} + s_{0}^{g}),$$

 $p = p_{0} + s^{g}(\mathbf{x}) * (p_{k} + \Delta p_{k}(\mathbf{x})).$

Adjust S_{max} to match inference resolution. As shown in Eq. (10), S_{max} controls the maximum sampling range in multiscale deformable convolution. As discussed in Sec. 3.1, we treat it as a resolution-dependent hyperparameter. It is straightforward to observe that scaling S_{max} with the relative aspect ratio between train size and inference size could match the reception field between train and inference:

$$s_{h}^{g}(\mathbf{x}) = \text{sigmoid}(\mathbf{W}_{s}^{T}\mathbf{x} + s_{0}^{g}) \cdot S_{\text{max}} \cdot \frac{H_{\text{test}}}{H_{\text{train}}}$$
(15)

$$s_w^g(\mathbf{x}) = \text{sigmoid}(\mathbf{W}_s^T \mathbf{x} + s_0^g) \cdot S_{\text{max}} \cdot \frac{W_{\text{test}}}{W_{\text{train}}}$$
(16)

Figure 5: Wide images examples of Class ID (972, 980, 437)