UMassAmherst

Manning College of Information & Computer Sciences

Attack-Resilient Image Watermarking Using Stable Diffusion

Lijun Zhang **UMass**

Xiao Liu **UMass**

Antoni Viros **Cindy Xiong** Martin Bearfield IBM Georgia Tech

Yuriy Brun UMass

Hui Guan **UMass**

Common Image Watermarking

Develop image watermarking method to inject **invisible and robust** watermark into the given image

Image Watermarking

Existing Methods (e.g., traditional frequency decomposition, NN-based methods)

Trade-off: Image quality ⇔ Watermark robustness

Invisibility	
Image quality after	
watermarking	
(e.g., SSIM, PSNR)	

Method	Image Quality SSIM	Post-Attack (JPEG) WDR
SSL	0.98	0.046
StegaStamp	0.91	1.0

Robustness

Watermark detection rate (i.e., WDR) after being attacked

[1] Xuandong Zhao, etc. Generative autoencoders as watermark attackers: Analyses of vulnerabilities and threats. ICML Workshop 2023.

New Challenge: Stable diffusion-based watermark removal^[1]

Image Watermarking

Proposed Method: ZoDiac

Invisibility Image quality after watermarking (e.g., SSIM, PSNR)

Robustness

Watermark detection rate (i.e., WDR) after being attacked

Learn a latent vector that encodes a pre-defined watermark within its Fourier space, and can be mapped by pre-trained stable diffusion models into an image closely resembling the original image.

Learn a latent vector that encodes a pre-defined watermark within its Fourier space, and can be mapped by pre-trained stable diffusion models into an image closely resembling the original image.

Learn a latent vector that encodes a pre-defined watermark within its Fourier space, and can be mapped by pre-trained stable diffusion models into an image closely resembling the original image.

Visual Examples

No significant visual influence after injecting watermark Can handle image with different domains

- A novel framework for embedding invisible watermarks into existing images using *any* pre-trained stable diffusion.
- Strong robustness against most watermark attacks with watermark detection rate above 98% and false positive rate below 6.4%.
- Resilient to generative-AI based image regeneration with WDR above 98% while baselines fails below 50%.

UMassAmherst

Manning College of Information & Computer Sciences

Attack-Resilient Image Watermarking Using Stable Diffusion

Lijun Zhang **UMass**

Xiao Liu **UMass**

Antoni Viros Martin IBM

Cindy Xiong Bearfield Georgia Tech

Yuriy Brun UMass

Hui Guan **UMass**