Get rich quick: exact solutions reveal how unbalanced initializations promote rapid feature learning Daniel Kunin*, Allan Raventós*, Clémentine Dominé, Feng Chen, David Klindt, Andrew Saxe, Surya Ganguli

NeurIPS 2024 Spotlight

*speed not to scale

Part I: A Minimal model that transitions between lazy & rich

The relative scale of the initialization determines the sign and magnitude of the conserved quantity

 $\delta = a^2 - ||w||^2$,

which constrains geometry of learning trajectories.

Downstream δ < 0 Balanced $\delta = 0$ Upstream $\delta > 0$

We study a two-layer linear network with a single hidden neuron $a \in \mathbb{R} \rightarrow \bullet$ defined by the map $f(x; \theta) = a w^{\intercal} x$ first proposed by Azulay et al. 2021. We show how to solve the gradient flow dynamics exactly by solving a Riccati equation and Bernoulli ODE.

which can be interpreted as preconditioned gradient flow on the loss. The preconditioning matrix determines the trajectory and NTK matrix $K = X M X^{\dagger}$.

We consider the influence of δ on the preconditioning matrix and notice three distinct regimes:

-
-

Using the conserved quantity we derive a self-consistent equation for the dynamics of $\beta = aw$ in function space,

$$
\dot{\beta} = -\left(\frac{\sqrt{\delta^2 + 4||\beta||^2} + \delta}{2}\mathbf{I}_d + \frac{\sqrt{\delta^2 + 4||\beta||^2} - \delta}{2}\frac{\beta \beta \mathbf{I}}{||\beta||^2}\right)\frac{\partial \mathcal{L}}{\partial \beta},
$$

M

3. Delayed rich — when $\delta \ll 0$, $M \approx |\delta|\frac{\beta \beta^{\intercal}}{\|R\|^{2}}$, initially lazy followed ∥*β*∥2

alignment (Atanasov et al. 2021).

by rich

1. Lazy — when $\delta \gg 0$, $M \approx \delta I_d$, akin to linear regression. 2. Rich — when $\delta = 0$, $M = \sqrt{\eta_d\eta_w}\|\beta\|({\bf I}_d+\frac{\beta\beta^{\intercal}}{\|\beta\|^2})$, akin to to silent $\frac{PP}{\|\beta\|^2}$

Part II: Extending analysis to wide, deep, and nonlinear networks

 W e consider the dynamics of a two-layer linear network, $f(x;\theta) = A^\intercal W x : \mathbb{R}^d \to \mathbb{R}^c$, where the matrix $\Delta = AA^\intercal - WW^\intercal \in \mathbb{R}^{h \times h}$ is conserved throughout gradient flow. By assuming structure on Δ at initialization we derive a self-consistent equation for the dynamics of $\beta = W^\intercal A$.

Theorem 4.2 When $\Delta = \delta \mathbf{I}_h$ and $h = d$ if $\delta < 0$ or $h = c$ if δ $\dot{\beta} = -\frac{\partial \mathscr{L}}{\partial \beta}$ $\frac{\partial \mathcal{L}}{\partial \beta}$ $\sqrt{\beta^{\dagger} \beta + \beta^{\dagger}}$ δ^2 4 $\mathbf{I}_c - \sqrt{\beta \beta^{\dagger}} +$

Using this expression the dynamics of the singular values of β can be described as a mirror flow with a $\bm{\mathsf{hyperbolic}}$ entropy potential, which smoothly interpolates between an ℓ^1 and ℓ^2 penalty on the singular values for the rich ($\delta \to 0$) and lazy ($\delta \to \pm \infty$) regimes respectively.

$$
> 0,
$$

$$
\beta \beta^{\dagger} + \frac{\delta^2}{4} I_d \frac{\partial \mathcal{L}}{\partial \beta}
$$

We consider the dynamics of a two-layer piecewise linear network without $\textsf{biases}, f(x; \theta) = a^\intercal \sigma(Wx) : \mathbb{R}^d \to \mathbb{R}$, where the quantity $\delta_k = a_k^2 - ||w_k||^2$ for each hidden neuron $k \in [h]$ is conserved through gradient flow.

As in linear networks, we attempt to derive a self-consistent equation for the dynamics of each neuron's map $\beta_k = a_k w_k$,

Rapid feature learning \blacktriangleright is due to a large change in activation patterns, but a small change in parameter space.

$$
\dot{\beta}_k = -M_k \sum_{i=1}^n c_{ki} x_i \left(f(x_i; \theta) - y_i \right).
$$

However, unlike the linear setting, the gradient $\partial \mathscr{L}/\partial \beta_k$ driving the dynamics is not shared for all neurons because of its dependence on the activation $\mathsf{patterns}\ c_{ki} = \sigma'(w_k^\intercal x_i).$

Nevertheless, we can understand the influence of δ_k on the learning dynamics by considering the radial and directional dynamics of β_k — the activation patterns c_{ki} only depend on the direction of β_k .

Part III: Observing the influence of relative scale in practice

We regulate the first layer's learning speed relative to the rest of the network by dividing its initialization by α — $\alpha=1$ represents standard parameterization, while $\alpha\gg 1$ and $\alpha\ll 1$ corresponds to upstream and downstream initializations, respectively.

Get rich quick: exact solutions reveal how unbalanced initializations promote rapid feature learning Daniel Kunin*, Allan Raventós*, Clémentine Dominé, Feng Chen, David Klindt, Andrew Saxe, Surya Ganguli

NeurIPS 2024 Spotlight

Come to our poster to learn more!