Get rich quick: exact solutions reveal how unbalanced initializations promote rapid feature learning Daniel Kunin*, Allan Raventós*, Clémentine Dominé, Feng Chen,

David Klindt, Andrew Saxe, Surya Ganguli

NeurIPS 2024 Spotlight

*speed not to scale

Part I: A Minimal model that transitions between lazy & rich

We study a two-layer linear network with a single hidden neuron defined by the map $f(x; \theta) = aw^{T}x$ first proposed by Azulay et al. 2021. We show how to solve the gradient flow dynamics exactly by solving a Riccati equation and Bernoulli ODE.

The relative scale of the initialization determines the sign and magnitude of the conserved quantity

 $\delta = a^2 - \|w\|^2,$

which constrains geometry of learning trajectories.

Downstream $\delta < 0$ **Balanced** $\delta = 0$ **Upstream** $\delta > 0$

Using the conserved quantity we derive a self-consistent equation for the dynamics of $\beta = aw$ in function space,

$$\dot{\beta} = -\left(\frac{\sqrt{\delta^2 + 4\|\beta\|^2} + \delta}{2}\mathbf{I}_d + \frac{\sqrt{\delta^2 + 4\|\beta\|^2} - \delta}{2}\frac{\beta\beta^{\mathsf{T}}}{\|\beta\|^2}\right)\frac{\partial\mathscr{L}}{\partial\beta},$$

М

which can be interpreted as preconditioned gradient flow on the loss. The preconditioning matrix determines the trajectory and NTK matrix $K = XMX^{T}$.

We consider the influence of δ on the preconditioning matrix and notice three distinct regimes:

alignment (Atanasov et al. 2021).

by rich

1. Lazy — when $\delta \gg 0$, $M \approx \delta \mathbf{I}_d$, akin to linear regression. 2. Rich — when $\delta = 0$, $M = \sqrt{\eta_a \eta_w} \|\beta\| (\mathbf{I}_d + \frac{\beta \beta^{\mathsf{T}}}{\|\beta\|^2})$, akin to to silent

3. Delayed rich — when $\delta \ll 0$, $M \approx |\delta| \frac{\beta\beta^{-1}}{\|\beta\|^2}$, initially lazy followed

Part II: Extending analysis to wide, deep, and nonlinear networks

We consider the dynamics of a two-layer linear network, $f(x; \theta) = A^{\mathsf{T}}Wx : \mathbb{R}^d \to \mathbb{R}^c$, where the matrix $\Delta = AA^{\mathsf{T}} - WW^{\mathsf{T}} \in \mathbb{R}^{h \times h}$ is conserved throughout gradient flow. By assuming structure on Δ at initialization we derive a self-consistent equation for the dynamics of $\beta = W^{\mathsf{T}}A$.

Theorem 4.2 When $\Delta = \delta \mathbf{I}_h$ and h = d if $\delta < 0$ or h = c if $\delta > \dot{\beta} = -\frac{\partial \mathscr{L}}{\partial \beta} \sqrt{\beta^{\mathsf{T}} \beta + \frac{\delta^2}{4} \mathbf{I}_c} - \sqrt{\beta}$

Using this expression the dynamics of the singular values of β can be described as a mirror flow with a **hyperbolic entropy** potential, which smoothly interpolates between an ℓ^1 and ℓ^2 penalty on the singular values for the rich ($\delta \rightarrow 0$) and lazy ($\delta \rightarrow \pm \infty$) regimes respectively.

$$> 0,$$

$$\beta\beta^{\dagger} + \frac{\delta^{2}}{4}\mathbf{I}_{d}\frac{\partial\mathscr{L}}{\partial\beta}$$

We consider the dynamics of a two-layer piecewise linear network without biases, $f(x; \theta) = a^{\mathsf{T}} \sigma(Wx) : \mathbb{R}^d \to \mathbb{R}$, where the quantity $\delta_k = a_k^2 - \|w_k\|^2$ for each hidden neuron $k \in [h]$ is conserved through gradient flow.

As in linear networks, we attempt to derive a self-consistent equation for the dynamics of each neuron's map $\beta_k = a_k w_{k'}$

$$\dot{\beta}_{k} = -M_{k} \underbrace{\sum_{i=1}^{n} c_{ki} x_{i} \left(f(x_{i}; \theta) - y_{i} \right)}_{\frac{\partial \mathcal{L}}{\partial \beta_{k}}}.$$

However, unlike the linear setting, the gradient $\partial \mathscr{L}/\partial \beta_k$ driving the dynamics is not shared for all neurons because of its dependence on the activation patterns $c_{ki} = \sigma'(w_k^T x_i)$.

Nevertheless, we can understand the influence of δ_k on the learning dynamics by considering the radial and directional dynamics of β_k — the activation patterns c_{ki} only depend on the direction of β_k .

Rapid feature learning + is due to a large change in activation patterns, but a small change in parameter space.

Part III: Observing the influence of relative scale in practice

We regulate the first layer's learning speed relative to the rest of the network by dividing its initialization by $\alpha - \alpha = 1$ represents standard parameterization, while $\alpha \gg 1$ and $\alpha \ll 1$ corresponds to upstream and downstream initializations, respectively.

Get rich quick: exact solutions reveal how unbalanced initializations promote rapid feature learning Daniel Kunin^{*}, Allan Raventós^{*}, Clémentine Dominé, Feng Chen, David Klindt, Andrew Saxe, Surya Ganguli

Come to our poster to learn more!

NeurIPS 2024 Spotlight