

Flatten Anything: Unsupervised Neural Surface Parameterization

Qijian Zhang¹, Junhui Hou^{1*}, Wenping Wang², Ying He³

¹City University of Hong Kong, Hong Kong SAR, China

²Texas A&M University, Texas, USA

³Nanyang Technological University, Singapore

Background

Surface Parameterization

> 3D surface → <u>opened & unfolded & flattened</u> → 2D plane

- Each 3D vertex (x, y, z) is mapped to a 2D UV coordinate (u, v).
- Satisfy certain *continuity* and *distortion* constraints.

Background

> Objectives

Mimic the *actual physical process* of flattening a 3D surface onto a 2D plane.

- High requirements and explicit constraints:
 - Global Mapping (Instead of Local)
 - □ Free Boundary (Instead of Fixed)
 - Conformal (Angle-Preserving)

Geometrically-Interpretable Network Components

- Deforming Network (Deform-Net)
 - Deform initial 2D grids to potentially-optimal UV coordinates.
- Wrapping Network (Wrap-Net)
 - □ Fold from 2D to 3D.
- Surface Cutting Network (Cut-Net)
- Unwrapping Network (Unwrap-Net)
 - □ Unfold from 3D to 2D.

Bi-Directional Cycle Mapping

> Bi-DirectionalCycleMapping

Bi-Directional Cycle Mapping

UV Coordinates

Checker-Image Texture Mapping

Cutting Seams

> Mesh Parameterization: Comparison with SLIM^[R1]

Testing Models	FAM	SLIM
Open-Surface Models (as in Figure 3)	0.156%	0.133%
Higher-Genus Models (as in Figure 4)	0.204%	N/A

Table 4: Quantitative self-intersection metrics of our parameterization results.

Table 1: Quantitative comparisons of our FAM and SLIM in terms of parameterization conformality.

Model	human-face	human-head	car-shell	spiral	human-hand	shirt	three-men	camel-head
SLIM	0.635	0.254	0.411	0.114	0.609	0.443	0.645	0.349
FAM	0.074	0.094	0.037	0.087	0.145	0.166	0.162	0.088

> Point Cloud Parameterization: Comparison with FBCP-PC^[R2]

Figure 5: Point cloud parameterization achieved by our FAM (left) and FBCP-PC (right).

Table 3: Conformality metrics of our FAM and FBCP-I	PC for point cloud	parameterization
---	--------------------	------------------

Model	cloth-pts (#Pts=7K)	julius-pts (#Pts=11K)	spiral-pts (#Pts=28K)
FBCP-PC	0.021	0.019	0.023
FAM	0.037	0.058	0.117

▶ [R2] G. P. Choi, et al., "*Free-Boundary Conformal Parameterization of Point Clouds*," in Journal of Scientific Computing, 2022.

> Robustness to Noise

Figure 8: Applying FAM to point clouds added with different levels of Gaussian *noises*.

Failure Case

Stress Test

(a) Highly challenging stress tests of our FAM.

> Running Efficiency

Table 5: Optimization time costs (minutes) of our FAM and SLIM.

Model	human-face	human-head	car-shell	spiral	human-hand	shirt	three-men	camel-head
SLIM	39 min	38 min	19 min	25 min	28 min	31 min	17 min	40 min
FAM	around 18 min (basically unchanged for different models)							

Flatten Anything: Unsupervised Neural Surface Parameterization

Qijian Zhang¹, Junhui Hou^{1*}, Wenping Wang², Ying He³

¹City University of Hong Kong, Hong Kong SAR, China

²Texas A&M University, Texas, USA

³Nanyang Technological University, Singapore

