

AutoPSV: Automated Process-Supervised Verifier

Jianqiao Lu¹, Zhiyang Dou¹, Hongru Wang², Zeyu Cao³, Jianbo Dai⁴, Yingjia Wan³, Yunlong Feng, Zhijiang Guo³

¹The University of Hong Kong ²The Chinese University of Hong Kong

³University of Cambridge ⁴University of Edinburgh

TL;DR

- 1. AutoPSV effectively identifies **variations in model confidence** to annotate the correctness of **intermediate reasoning steps**, enabling **efficient automatic labeling for process supervision**.
- 2. AutoPSV significantly improves the **performance and scalability** of verification models in mathematical and commonsense reasoning tasks.
- 3. AutoPSV's versatility is evident in its applicability to **both labeled and unlabeled dataset settings** after completing the training process.

Background

Problem Response selection from multiple candidates for reasoning tasks

Parameterization

- *q* : input question
- $S_i^{(1:t)}$: *i*-th solution contains from 1 to t-th reasoning steps
- y_i : binary correctness label

Outcome-Supervision vs. Process-Supervision $y_i vs y_i^t$

Current Process-Supervision Methods

- Human annotations: expensive
- Monte Carlo Tree Search (MCTS-based) : computationally inefficient

Motivation

Finding: Even models exceeding 70 billion parameters demonstrate suboptimal selection performance when relying solely on prompting without fine-tuning.

response generator: Mixtral-Instruct (8 x 7b)

Table 1: Performance of Mixtral-Instruct on GSM8K. All results are reported in accuracy (%).

Response Generator	Model Size (Parameters)	Pass@1 (%)	Pass@5 (%)	Self-Consistency (%)
Mixtral-Instruct [31]	8 x 7B (MOE)	62.55	82.31	69.06

selectors: Mistral-Instruct (7b), Mixtral-Instruct, Llama2-chat (70b) and Qwen (72b)

Table 2: Comparison of different selection methods across various model sizes for selecting a response from candidate responses generated by Mixtral-Instruct. All results are reported in accuracy (%).

Selector	Model Size	Prompt Strategy							
		Pairwise	Classification	Classification + CoT	Scoring	Scoring + CoT			
Mistral-Instruct [32]	7B	60.73	61.18	64.82	61.49	69.75			
Mixtral-Instruct [31]	$8 \times 7B$	58.83	59.14	67.40	61.79	65.58			
Llama2-chat [33]	70B	59.28	62.70	66.79	59.74	62.93			
Qwen [34]	72B	59.14	66.64	69.52	61.86	65.88			

Outcome-Supervision

$$L\left(S_{i}^{(1:t)}, y_{i}; q\right) = \left(f_{\theta}\left(S_{i}^{(1:t)}; q\right) - y_{i}\right)^{2}$$

We firstly define
$$\Delta_{conf}^{t} = \frac{f_{\theta}\left(S_{i}^{(1:t+1)};q\right) - f_{\theta}\left(S_{i}^{(1:t)};q\right)}{f_{\theta}\left(S_{i}^{(1:t)};q\right)}$$
 and

Process-Supervision

$$L\left(S_{i}^{(1:t)}, y_{i}^{t}; q\right) = \left(f_{\theta}\left(S_{i}^{(1:t)}; q\right) - y_{i}^{t}\right)^{2}$$

Where

If
$$\Delta_{conf}^t > \theta$$
, $y_i^t = 1$, else $y_i^t = 0$

Problem:

Anna spent 1/4 of her money, and now she has \$24 left. How much did she have originally?

Solution Sets:

Given an LLM acting as a response generator, we seek to annotate each reasoning step and perform response selection.

Given an LLM acting as a response generator, we seek to annotate each reasoning step and perform response selection.

We train an outcome-supervised verifier based on the groundtruth answers.

Given an LLM acting as a response generator, we seek to annotate each reasoning step and perform response selection.

We train an outcome-supervised verifier based on the groundtruth answers. We then train a process-supervised verifier to annotate steps via confidence variation.

Preliminary Findings

1. Good Performance of Outcome-Supervised Verifier for Response Selection Task

Response Generator	Pass@1	Pass@5	SC	OSV (Mistral)	OSV (Phi)
Mistral-Instruct	42.08	69.90	50.03	60.72	52.61
Mixtral-Instruct	62.55	82.31	69.06	74.07	69.37
Qwen	77.03	91.13	81.27	85.00	84.19

Table 3: Performance of OSV models across different configurations.

2. High Efficiency of Δ_{conf}^{t} for Detecting Calculation Error During Math Reasoning

Table 5: Process Calculation Error Detection Performance with Varying Threshold (θ) Values.

Metric	Threshold (θ) Value								
	0.5	0.6	0.7	0.8	0.9				
Prec.	0.85	0.88	0.91	0.93	0.94				
Recall	0.90	0.89	0.86	0.83	0.80				
F1-Score	0.88	0.89	0.88	0.88	0.86				

Experiment: Main Results

Mathematics Reasoning

Bornouse Computer	GSM8K				MATH			
Response Generator	Pass@5	Self-Cons.	OSV	OSV + PSV	Pass@5	Self-Cons.	OSV	OSV + PSV
Mistral-Instruct	69.90	50.03	61.18	61.41	7.7	1.64	5.10	5.30
Mixtral-Instruct	82.30	69.06	74.91	76.04	22.80	10.66	15.2	16.92
Qwen	91.13	81.27	84.91	85.15	56.10	40.10	38.94	39.36

Table 6: Results on mathematics benchmarks.

Commonsense Reasoning

Table 7: Results on commonsense reasoning benchmarks.

Bernande Committee	HellaSwag				Winogrande			ANLI				
Response Generator	Pass@5	Self-Cons.	OSV	OSV + PSV	Pass@5	Self-Cons.	OSV	OSV + PSV	Pass@5	Self-Cons.	OSV	OSV + PSV
Mistral-Instruct	76.84	40.30	73.81	74.45	91.16	58.64	79.16	79.98	73.4	45.6	59.8	59.3
Mixtral-Instruct	84.05	73.67	82.83	83.62	79.16	68.75	73.40	73.88	68.4	59.0	62.9	64.0
Qwen	95.28	85.44	93.08	93.99	88.63	72.21	80.34	79.32	82.4	63.8	69.1	71.4

Experiment: Analysis

Performance in Labeled Settings

Performance Comparison

Posponso Conorator			GSM8K				MATH	[]
Response Generator	Pass@5	Self-Cons.	Process (MCTS)	Process (AUTOPSV)	Pass@5	Self-Cons.	Process (MCTS)	Process (AUTOPSV)
Mistral-Instruct	69.90	50.03	54.13	55.32	7.7	1.64	3.3	3.24
Mixtral-Instruct	82.30	69.06	72.36	72.12	22.80	10.66	12.18	12.54
Qwen	91.13	81.27	82.17	82.83	56.10	40.10	36.88	37.10

Annotation Cost Comparison

Dataset	#Questions	#Steps(Avg.)	#Solution Statistical #Steps(Avg.) #Steps(Overall) #Tokens(Avg.) #Tokens(Overall)				ation Cost Process (AUTOPSV)
GSM8K	7,473	4.47	334,358	126	9,379,258	2,808	127
MATH	7,498	16.00	1,200,177	272	1,621,515,894	21,626	273

Performance in Unlabeled Settings

Further Performance Improvement

Response Generator	Pass@5	Self-Cons.	OSV (GSM8K)	MCTS (GSM8K)	OSV+PSV (GSM8K)	OSV+PSV (GSM8K+WizardLM)
Mistral-Instruct	69.90	50.03	61.18	60.82	61.41	63.11
Mixtral-Instruct	82.30	69.06	74.91	75.10	76.04	78.15
Qwen	91.13	81.27	84.91	84.85	85.15	86.77

Thanks!