

AutoPSV: Automated Process-Supervised Verifier

Jianqiao Lu¹, Zhiyang Dou¹, Hongru Wang², Zeyu Cao³, Jianbo Dai⁴, Yingjia Wan³, Yunlong Feng, Zhijiang Guo³

¹The University of Hong Kong ²The Chinese University of Hong Kong

³University of Cambridge ⁴University of Edinburgh

TL;DR

- 1. AutoPSV effectively identifies **variations in model confidence** to annotate the correctness of **intermediate reasoning steps**, enabling **efficient automatic labeling for process supervision.**
- 2. AutoPSV significantly improves the **performance and scalability** of verification models in mathematical and commonsense reasoning tasks.
- 3. AutoPSV's versatility is evident in its applicability to **both labeled and unlabeled dataset settings** after completing the training process.

Background

Problem Response selection from multiple candidates for reasoning tasks

Parameterization

- $q:$ input question
- $S_i^{(1:t)}$: *i*-th solution contains from 1 to t-th reasoning steps
- y_i : binary correctness label

Outcome-Supervision vs. Process-Supervision y_i vs y_i^t

Current Process-Supervision Methods

- Human annotations: expensive
- Monte Carlo Tree Search (MCTS-based) : computationally inefficient

Motivation

Finding: Even models exceeding 70 billion parameters demonstrate suboptimal selection performance when relying solely on prompting without fine-tuning.

response generator: Mixtral-Instruct (8 x 7b)

Table 1: Performance of Mixtral-Instruct on GSM8K. All results are reported in accuracy (%).

selectors: Mistral-Instruct (7b), Mixtral-Instruct, Llama2-chat (70b) and Qwen (72b)

Table 2: Comparison of different selection methods across various model sizes for selecting a response from candidate responses generated by Mixtral-Instruct. All results are reported in accuracy (%).

Outcome-Supervision

$$
L\left(S_i^{(1:t)}, y_i; q\right) = \left(f_{\theta}\left(S_i^{(1:t)}; q\right) - y_i\right)^2
$$

We firstly define
$$
\Delta_{conf}^t = \frac{f_{\theta}\left(s_i^{(1:t+1)}:q\right) - f_{\theta}\left(s_i^{(1:t)}:q\right)}{f_{\theta}\left(s_i^{(1:t)}:q\right)}
$$
 and

Process-Supervision

$$
L\left(S_i^{(1:t)}, y_i^t : q\right) = \left(f_\theta\left(S_i^{(1:t)} : q\right) - y_i^t\right)^2
$$

Where

If
$$
\Delta_{conf}^t > \theta
$$
, $y_i^t = 1$, else $y_i^t = 0$

Problem:

Anna spent 1/4 of her money, and now she has \$24 left. How much did she have originally?

Solution Sets:

Given an LLM acting as a response generator, we seek to annotate each reasoning step and perform response selection.

Given an LLM acting as a response generator, we seek to annotate each reasoning step and perform response selection.

We train an outcome-supervised verifier based on the groundtruth answers.

Given an LLM acting as a response generator, we seek to annotate each reasoning step and perform response selection.

We train an outcome-supervised verifier based on the groundtruth answers.

We then train a process-supervised verifier to annotate steps via confidence variation.

Preliminary Findings

1. Good Performance of Outcome-Supervised Verifier for Response Selection Task

Table 3: Performance of OSV models across different configurations.

2. High Efficiency of $\bm{\varDelta^{t}_{conf}}$ for Detecting Calculation Error During Math Reasoning

Table 5: Process Calculation Error Detection Performance with Varying Threshold (θ) Values.

Experiment: Main Results

Mathematics Reasoning

Table 6: Results on mathematics benchmarks.

Commonsense Reasoning

Table 7: Results on commonsense reasoning benchmarks.

Experiment: Analysis

Performance in Labeled Settings

Performance Comparison

Annotation Cost Comparison

Performance in Unlabeled Settings

Further Performance Improvement

Thanks!