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TL;DR

Predictive coding inference seems to make the loss 
landscape of feedforward neural networks more 

benign and robust to vanishing gradients.
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Introduction: predictive coding

• In contrast to BP, PC iteratively infers network activities before updating weights

• This incurs an extra compute cost, but it has 
been argued to provide many benefits such as 
faster learning convergence [Song et al. ’22]

• Predictive coding (PC) is a brain-inspired learning algorithm that can train 
deep neural networks (DNNs) as an alternative to backpropagation (BP)

• However, these speed-ups are not always 
observed, and the impact of PC inference on 
learning is not theoretically well understood



Introduction: approach

• We focus on saddle points of the equilibrated energy

• To address this gap, we study the geometry of the effective landscape 
on which PC learns: the weight landscape at the equilibrium of the 
network activities



Introduction: saddles & neural networks

• They have been characterised as [e.g. Get et al. ’15]:

• Saddles are ubiquitous in the loss landscape of DNNs [Dauphin et al. ’14]

i) “Strict”, with negative curvature (indefinite Hessian), or

ii) “Non-strict”, where an escape (negative) direction is found in higher-order (n>2) derivatives

• Stochastic gradient descent (SGD) can be exponentially slowed by strict saddles [Du et 
al. ’17] and effectively get stuck in non-strict ones [e.g. Böttcher & Wheeler ’24]

• (This is vanishing gradients from a landscape perspective [Orvieto et al. ’22].)
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(a) Contour plot of the objective
function and tube defined in 2D.

(b) Trajectory of gradient descent
in the tube for d = 3.

(c) Octopus defined in 2D.

Figure 2: Graphical illustrations of our counter-example with � = e. The blue points are saddle
points and the red point is the minimum. The pink line is the trajectory of gradient descent.
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(b) L = 1.5, � = 1
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(d) L = 3, � = 1

Figure 3: Performance of GD and PGD on our counter-example with d = 5.
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Figure 4: Performance of GD and PGD on our counter-example with d = 10

Extension: from octopus to Rd
. Up to now we have constructed a function defined on a closed

subset of Rd. The last step is to extend this function to the entire Euclidean space. Here we apply the
classical Whitney Extension Theorem (Theorem B.3) to finish our construction. We remark that the
Whitney extension may lead to more stationary points. However, we will demonstrate in the proof
that GD and PGD stay within the interior of “octopus” defined above, and hence cannot converge to
any other stationary point.

5 Experiments

In this section we use simulations to verify our theoretical findings. The objective function is defined
in (14) and (15) in the Appendix. In Figures 3 and Figure 4, GD stands for gradient descent and
PGD stands for Algorithm 1. For both GD and PGD we let the stepsize � = 1

4L . For PGD, we
choose tthres = 1, gthres = ⌅e

100 and r = e
100 . In Figure 3 we fix dimension d = 5 and vary L as

considered in Section 4.1; similarly in Figure 4 we choose d = 10 and vary L. First notice that in
all experiments, PGD converges faster than GD as suggested by our theorems. Second, observe the
“horizontal" segment in each plot represents the number of iterations to escape a saddle point. For
GD the length of the segment grows at a fixed rate, which coincides with the result mentioned at the
beginning for Section 4.1 (that the number of iterations to escape a saddle point increase at each time
with a multiplicative factor L+⌅

⌅ ). This phenomenon is also verified in the figures by the fact that as
the ratio L+⌅

⌅ becomes larger, the rate of growth of the number of iterations to escape increases. On
the other hand, the number of iterations for PGD to escape is approximately constant (� 1

⇧⌅ ).
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Introduction: contributions

• For DLNs, we first show that, at the equilibrium of the network activities, the PC energy is 
equal to a rescaled mean squared error (MSE) loss with a weight-dependent rescaling 

• We then prove that many highly degenerate (non-strict) saddles of the loss become much 
easier to escape (strict) in the equilibrated energy

• We empirically verify that our linear theory holds for non-linear networks

• We provide evidence that other non-strict saddles of the loss that we do not address 
theoretically also become strict in the equilibrated energy
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Preliminaries

• PC energy for DLNs:

• Minimised in 2 phases:

• In practice, inference is run to convergence until                before updating the weights

• Importantly, the effective landscape on which PC learns is the energy at the inference 
equilibrium                           which we will abbreviate as  

• MSE loss for DLNs:
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Theoretical results: equilibrated energy as rescaled MSE

• At the inference equilibrium, the PC energy turns out to be equal to a rescaled MSE loss



Theoretical results: equilibrated energy as rescaled MSE

1 50 100
0

20

theory
experiment

Training iteration

En
er

gy

Loading [MathJax]/extensions/MathMenu.js

1 50 100

0.5

1

theory
experiment

Training iteration

En
er

gy

1 50 100
0

0.5
theory
experiment

Training iteration

En
er

gy

1 50 100

1

2

3
theory
experiment

Training iteration

En
er

gy

1 50 100

0.5
theory
experiment

Training iteration
En

er
gy

1 50 100
0

0.5

theory
experiment

Training iteration

En
er

gy

1 50 100

1

2
theory
experiment

Training iteration

En
er

gy

1 50 100

0.5
theory
experiment

Training iteration

En
er

gy

1 50 100
0

0.5
theory
experiment

Training iteration

En
er

gy

H = 1 H = 2 H = 5 H = 10 (1)

HL(◊ú
)

HF (◊ú
)

Definition: Saddle point.

A stationary point x
ú

of f(x) where is Òf(x
ú
) = 0 is a

saddle if ⁄max(Ò2
f(x

ú
)) > 0 and ⁄min(Ò2

f(x
ú
)) < 0.

Definition: Saddle point.

A critical point ◊
ú

of L(◊) where is ÒL(◊
ú
) = 0 is a saddle

if ⁄max(Ò2L(◊
ú
)) > 0 and ⁄min(Ò2L(◊

ú
)) < 0.

Hessian eigendecomposition.

Hf = Q�Q
T

=

Nÿ

i

ei⁄ie
T
i (2)

where Q =

C
| | |

e1 . . . eN

| | |

D
is the eigenbasis

of the Hessian and � = diag(⁄1, . . . , ⁄N ) is

the matrix of associated eigenvalues.

1

v̂max

v̂min

H = 1 H = 2 H = 3 H = 4 H = 5 H = 10

HL(◊ú
)

HF (◊ú
)

Definition: Saddle point.

A stationary point x
ú

of f(x) where is Òf(x
ú
) = 0 is a

saddle if ⁄max(Ò2
f(x

ú
)) > 0 and ⁄min(Ò2

f(x
ú
)) < 0.

Definition: Saddle point.

A critical point ◊
ú

of L(◊) where is ÒL(◊
ú
) = 0 is a saddle

if ⁄max(Ò2L(◊
ú
)) > 0 and ⁄min(Ò2L(◊

ú
)) < 0.

Hessian eigendecomposition.

Hf = Q�Q
T

=

Nÿ

i

ei⁄ie
T
i (1)

where Q =

C
| | |

e1 . . . eN

| | |

D
is the eigenbasis

of the Hessian and � = diag(⁄1, . . . , ⁄N ) is

the matrix of associated eigenvalues.

1

H = 1 H = 2 H = 5 H = 10 (1)

HL(◊ú
)

HF (◊ú
)

Definition: Saddle point.

A stationary point x
ú

of f(x) where is Òf(x
ú
) = 0 is a

saddle if ⁄max(Ò2
f(x

ú
)) > 0 and ⁄min(Ò2

f(x
ú
)) < 0.

Definition: Saddle point.

A critical point ◊
ú

of L(◊) where is ÒL(◊
ú
) = 0 is a saddle

if ⁄max(Ò2L(◊
ú
)) > 0 and ⁄min(Ò2L(◊

ú
)) < 0.

Hessian eigendecomposition.

Hf = Q�Q
T

=

Nÿ

i

ei⁄ie
T
i (2)

where Q =

C
| | |

e1 . . . eN

| | |

D
is the eigenbasis

of the Hessian and � = diag(⁄1, . . . , ⁄N ) is

the matrix of associated eigenvalues.

1

L
in

e
a
r

T
a
n

h
R

e
L

U

M
N

I
S

T
M

N
I
S

T
-
1

D
F

a
s
h

io
n

-
M

N
I
S

T
C

I
F

A
R

-
1

0

v̂
m

ax

v̂
m

in

H
=

1
H

=
2

H
=

3
H

=
4

H
=

5
H

=
1
0

H
L

(
◊

ú )

H
F

(
◊

ú )

D
e
fi
n
it

io
n
:

S
a
d
d
le

p
o
in

t
.

A
s
t
a
t
io

n
a
r
y

p
o
in

t
x

ú
o
f

f
(
x

)
w

h
e
r
e

is
Ò

f
(
x

ú )
=

0
is

a

s
a
d
d
le

if
⁄

m
a

x
(
Ò

2 f
(
x

ú )
)

>
0

a
n
d

⁄
m

in
(
Ò

2 f
(
x

ú )
)

<
0
.

D
e
fi
n
it

io
n
:

S
a
d
d
le

p
o
in

t
.

A
c
r
it

ic
a
l

p
o
in

t
◊

ú
o
f

L
(
◊
)

w
h
e
r
e

is
Ò

L
(
◊

ú )
=

0
is

a
s
a
d
d
le

if
⁄

m
a

x
(
Ò

2 L
(
◊

ú )
)

>
0

a
n
d

⁄
m

in
(
Ò

2 L
(
◊

ú )
)

<
0
.

H
e
s
s
ia

n
e
ig

e
n
d
e
c
o
m

p
o
s
it

io
n
.

H
f

=
Q

�
Q

T
=

N ÿ i

e
i⁄

ie
T i

(
1
)

w
h
e
r
e

Q
=

C
|

|
|

e 1
..

.
e N

|
|

|

D
is

t
h
e

e
ig

e
n
b
a
s
is

o
f

t
h
e

H
e
s
s
ia

n
a
n
d

�
=

d
ia

g
(
⁄

1,
.
.
.
,
⁄

N
)

is

t
h
e

m
a
t
r
ix

o
f

a
s
s
o
c
ia

t
e
d

e
ig

e
n
v
a
lu

e
s
. 1

L
in

e
a
r

T
a
n

h
R

e
L

U

M
N

I
S

T
M

N
I
S

T
-
1

D
F

a
s
h

io
n

-
M

N
I
S

T
C

I
F

A
R

-
1

0

v̂
m

ax

v̂
m

in

H
=

1
H

=
2

H
=

3
H

=
4

H
=

5
H

=
1
0

H
L

(
◊

ú )

H
F

(
◊

ú )

D
e
fi
n
it

io
n
:

S
a
d
d
le

p
o
in

t
.

A
s
t
a
t
io

n
a
r
y

p
o
in

t
x

ú
o
f

f
(
x

)
w

h
e
r
e

is
Ò

f
(
x

ú )
=

0
is

a

s
a
d
d
le

if
⁄

m
a

x
(
Ò

2 f
(
x

ú )
)

>
0

a
n
d

⁄
m

in
(
Ò

2 f
(
x

ú )
)

<
0
.

D
e
fi
n
it

io
n
:

S
a
d
d
le

p
o
in

t
.

A
c
r
it

ic
a
l

p
o
in

t
◊

ú
o
f

L
(
◊
)

w
h
e
r
e

is
Ò

L
(
◊

ú )
=

0
is

a
s
a
d
d
le

if
⁄

m
a

x
(
Ò

2 L
(
◊

ú )
)

>
0

a
n
d

⁄
m

in
(
Ò

2 L
(
◊

ú )
)

<
0
.

H
e
s
s
ia

n
e
ig

e
n
d
e
c
o
m

p
o
s
it

io
n
.

H
f

=
Q

�
Q

T
=

N ÿ i

e
i⁄

ie
T i

(
1
)

w
h
e
r
e

Q
=

C
|

|
|

e 1
..

.
e N

|
|

|

D
is

t
h
e

e
ig

e
n
b
a
s
is

o
f

t
h
e

H
e
s
s
ia

n
a
n
d

�
=

d
ia

g
(
⁄

1,
.
.
.
,
⁄

N
)

is

t
h
e

m
a
t
r
ix

o
f

a
s
s
o
c
ia

t
e
d

e
ig

e
n
v
a
lu

e
s
. 1

L
in

e
a
r

T
a
n

h
R

e
L

U

M
N

I
S

T
M

N
I
S

T
-
1

D
F

a
s
h

io
n

-
M

N
I
S

T
C

I
F

A
R

-
1

0

v̂
m

ax

v̂
m

in

H
=

1
H

=
2

H
=

3
H

=
4

H
=

5
H

=
1
0

H
L

(
◊

ú )

H
F

(
◊

ú )

D
e
fi
n
it

io
n
:

S
a
d
d
le

p
o
in

t
.

A
s
t
a
t
io

n
a
r
y

p
o
in

t
x

ú
o
f

f
(
x

)
w

h
e
r
e

is
Ò

f
(
x

ú )
=

0
is

a

s
a
d
d
le

if
⁄

m
a

x
(
Ò

2 f
(
x

ú )
)

>
0

a
n
d

⁄
m

in
(
Ò

2 f
(
x

ú )
)

<
0
.

D
e
fi
n
it

io
n
:

S
a
d
d
le

p
o
in

t
.

A
c
r
it

ic
a
l

p
o
in

t
◊

ú
o
f

L
(
◊
)

w
h
e
r
e

is
Ò

L
(
◊

ú )
=

0
is

a
s
a
d
d
le

if
⁄

m
a

x
(
Ò

2 L
(
◊

ú )
)

>
0

a
n
d

⁄
m

in
(
Ò

2 L
(
◊

ú )
)

<
0
.

H
e
s
s
ia

n
e
ig

e
n
d
e
c
o
m

p
o
s
it

io
n
.

H
f

=
Q

�
Q

T
=

N ÿ i

e
i⁄

ie
T i

(
1
)

w
h
e
r
e

Q
=

C
|

|
|

e 1
..

.
e N

|
|

|

D
is

t
h
e

e
ig

e
n
b
a
s
is

o
f

t
h
e

H
e
s
s
ia

n
a
n
d

�
=

d
ia

g
(
⁄

1,
.
.
.
,
⁄

N
)

is

t
h
e

m
a
t
r
ix

o
f

a
s
s
o
c
ia

t
e
d

e
ig

e
n
v
a
lu

e
s
. 1



Theoretical results: saddle analysis

• Many highly degenerate (non-strict) saddles of the MSE loss become much easier to 
escape (strict) in the equilibrated energy

• These saddles include the origin, effectively making PC more robust to vanishing gradients



Theoretical results: saddle analysis
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Experiments: what about non-linear networks?
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• To test the theory, we train various networks on standard datasets by initialising close to 
the considered saddles (e.g. origin)

• We find that, for the same learning 
rate, SGD on the equilibrated 
energy (PC) escapes much faster 
than on the loss (BP)
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• To test other non-strict saddles of the loss that we do not address theoretically, we train 
networks on a matrix completion task, where we know that starting near origin GD 
goes through these other saddles
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Conclusion

• Summary: we provided theoretical and empirical evidence that the effective landscape 
on which PC learns has only strict saddles and is more robust to vanishing gradients

• Limitation: inference convergence significantly slows down with network depth and 
remains a key challenge for scaling PC to large tasks

• Conjecture: all the saddles of the equilibrated energy are strict

• Conclusion: our work suggests that PC inference makes the loss landscape of 
feedforward neural networks more benign or easier to navigate
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