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Problem 
Definition

• Autonomous agents often fail in 
unseen environments.

• To train an agent robust to 
environmental changes, we focus on 
generating adversarial environments 
in which the agent will be trained.
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Unsupervised Environment Design (UED)

• UED is a framework designed to find a minimax 
regret policy 𝜋∗ that is robust to the variations in 
the environment 𝜃.

• To obtain 𝜋∗, UED solves the following min-max 
problem:

EnvironmentsResults

Generator
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Unsupervised Environment Design (UED)

EnvironmentsResults

Generator

• Prior works on UED
▪ train an environment generator via reinforcement 

learning.

➢ Stability ↓ / Sample efficiency ↑

▪ replay among randomly generated environments with 
high regrets.

➢ Stability ↑ / Sample efficiency ↓

• We propose a method which takes the advantages 
of two approaches by leveraging the power of the 
diffusion model.
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Soft UED

• We augment the UED objective to ensure the diversity of the training 
environments and enhance the stability.

• The modified min-max problem has a valid optimal point.

Λ:  distribution over a set of
environment parameter
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Regret-Guided Diffusion Models

• The soft UED converts the problem of finding regret-maximizing 𝜃 into the problem of 
sampling 𝜃 from the following distribution:

• Then, we solve this sampling problem using guided diffusion:

• : pre-train a diffusion model,          : estimate regret in a differentiable form

𝑢 ⋅ :  uniform distribution
𝐶𝜋:    normalizing constant
𝜔:    guidance weight
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A Differentiable Regret Estimator

• Prior works estimate the regret in a non-differentiable form.

• We utilize an environment critic 𝜏𝜓, which predicts a distribution of return.

mean CVaR

Return

Probability

𝒛𝟎 𝒛𝟏 ... 𝒛𝑴−𝟏
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Diffusion-based environment generator

EnvironmentsEpisodic results

Regret guidance

Environment critic

Overview: ADD
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Diffusion-based environment generator

EnvironmentsEpisodic results

Regret guidance

Environment critic

Overview: ADD

• No additional training of the generator

➢ Stability ↑

• Directly generates training environments

➢ Sample efficiency ↑

• Effectively combines the strengths of 
previous UED methods!
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Experiments

• Tasks
▪ Minigrid

▪ BipedalWalker

• Evaluation
• Zero-shot transfer performance

• Generated curriculum
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Test environments

Minigrid Results

Results
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Minigrid Results

Generated training environments
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Test environments Results

BipedalWalker Results 
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Generated training environments

BipedalWalker Results 
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Controlling Difficulty Levels

• Additionally, our method can control the difficulty level of environments it generates
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Controlling Difficulty Levels
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Thank you for your attention

If you have any questions, please contact hojun.chung@rllab.snu.ac.kr
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