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• The P-VAE encodes its inputs in discrete spike counts, thus,
it is one step closer to the brain (but still work in progress).

• What we’re really excited about, a hierarchical P-VAE with
linear decoders all the way down:

• A sweet spot between interpretable/expressive?

• We introduced the P-VAE, an architecture that draws inspiration
from well-established concepts in neurosceice, and integrates
them with modern machine learning.

• A metabolic cost term emerges in the P-VAE loss “for free,”
suggesting a connection to sparse coding, which we verify.

Rate-distortion curves [10]:
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gap with LCAinference
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Locally Competetive Algorithm (LCA, [7]), a “shallow” model from 2008,

outperforms heavily-parameterized P-VAE with a convlutional encoder {iterative > amortized
inference suboptimality:

Trained on 16 x 16 natural image patches [8], 512 dictionary elements
Poisson VAE (# dead neurons: 5)

Laplace VAE (# dead neurons: 416)

Gaussian VAE (# dead neurons: 401)

Categorical VAE (# dead neurons: 4) Iterative shrinkage-thresholding algorithm (ISTA)

Locally competitive algorithm (LCA, [9])

The P-VAE
largely avoids
the posterior
collapse issue

Technical challenge: gradient descent with discrete, stochastic latents

Intuition: think about the Poisson process generating the spike count samples

Algorithm 1 Reparameterized sampling (rsample) for Poisson distribution.

Input:
λ ∈ RB×K

>0 # rate parameter; B, batch size; K, latent dimensionality
n exp # number of exponential samples to generate
temperature # controls the sharpness of the thresholding

1: procedure Rsample(λ, n exp, temperature)
2: Exp ← Exponential(λ) � create exponential distribution
3: ∆t ← Exp.rsample((n exp, )) � sample inter-event times, ∆t : [n exp×B ×K]
4: times ← cumsum(∆t, dim=0) � compute arrival times, same shape as ∆t

5: indicator ← sigmoid
(

1−times
temperature

)
� soft indicator for events within unit time

6: z ← sum(indicator,dim=0) � event counts, or number of spikes, z : [B ×K]
7: return z
8: end procedure

Time0 1

The metabolic cost term in the objective is reminiscent of sparse coding.
To make this connection more explicit, we adopt additional assumptions
commonly made in sparse coding (SC):
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residual parameterization
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Poisson KL-term has closed-form solution!

(see paper appendix for the full derivation)

E
ncoder

D
ecoder

Posterior inference: which set of latents
are likely given a data sample     ?

True (unknown) posterior:

Approx. posterior     that minimizes:

VAE
Loss

Most common parameterization
of VAEs: Gaussian latent space { by the encoder network

are produced 

Gaussian latents:
The brain: Uses rate coding, encodes inputs into discrete spike counts

Continuous Unconstrained (both +/- values)

We introduce the “Poisson Variational Autoencoder” (P-VAE), a novel
architecture that draws inspiration from centuries of neuroscience

research and links them with modern machine learning
Perception as Inference Rate Coding Predictive Coding
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We are going to “understand” the brain through the
study of brain-like artificial neural networks (ANN)

Challenge :  design ANNs that exhibit
brain-like structure and function


