

## Mixture of experts meets Prompt-based Continual Learning

Minh Le<sup>3</sup>, An Nguyen<sup>2\*</sup>, Huy Nguyen<sup>1\*</sup>, Trang Nguyen<sup>3\*</sup>,

Trang Pham<sup>3</sup>\*, Linh Van Ngo<sup>2</sup>, Nhat Ho<sup>1</sup>

<sup>1</sup> University of Texas at Austin <sup>2</sup> Hanoi University of Science and Technology <sup>3</sup> VinAl Research







### **Continual Learning**



#### **Prompt-based Continual Learning**



#### **Prompt-based Continual Learning**



Efficient, astonishing performance BUT LACKS A THEORETICAL FOUNDATION!

#### **Mixture of Experts**

An MoE model consists of:

- a group of N expert networks  $f_i: \mathbb{R}^d \to \mathbb{R}^{d_v}$
- a gate function  $G: \mathbb{R}^d \to \mathbb{R}^N$
- a learned score function  $s_i : \mathbb{R}^d \to \mathbb{R}$

Given an input  $h \in \mathbb{R}^d$ , its MoE output is computed as:

$$y \coloneqq \sum_{j=1}^{N} G(\boldsymbol{h})_{j} \cdot f_{j}(\boldsymbol{h}) \coloneqq$$
$$\sum_{j=1}^{N} \frac{\exp(s_{j}(\boldsymbol{h}))}{\sum_{l=1}^{N} \exp(s_{l}(\boldsymbol{h}))} \cdot f_{j}(\boldsymbol{h}),$$

where  $G(h) \coloneqq softmax(s_1(h), ..., s_N(h))$ .



### **Mixture of Experts**

#### An MoE model consists of:

- a group of N expert networks  $f_i: \mathbb{R}^d \to \mathbb{R}^{d_v}$ , for all  $i \in [N]$
- a gate function  $G: \mathbb{R}^d \to \mathbb{R}^N$
- a learned score function  $s_i : \mathbb{R}^d \to \mathbb{R}$

Given an input  $h \in \mathbb{R}^d$ , its MoE output is computed as:

$$y \coloneqq \sum_{j=1}^{N} G(\boldsymbol{h})_{j} \cdot f_{j}(\boldsymbol{h}) \coloneqq$$
$$\sum_{j=1}^{N} \frac{\exp(s_{j}(\boldsymbol{h}))}{\sum_{l=1}^{N} \exp(s_{l}(\boldsymbol{h}))} \cdot f_{j}(\boldsymbol{h}),$$

where  $G(h) \coloneqq softmax(s_1(h), ..., s_N(h))$ .



#### **Mixture of Experts**

An MoE model consists of:

- a group of N expert networks  $f_i: \mathbb{R}^d \to \mathbb{R}^{d_v}$ , for all  $i \in [N]$
- a gate function  $G: \mathbb{R}^d \to \mathbb{R}^N$
- learned score function  $s_i : \mathbb{R}^d \to \mathbb{R}$

Given an input  $h \in \mathbb{R}^d$ , its MoE output is computed as:

$$y \coloneqq \sum_{j=1}^{N} G(\boldsymbol{h})_{j} \cdot f_{j}(\boldsymbol{h}) \coloneqq$$
$$\sum_{j=1}^{N} \frac{\exp(s_{j}(\boldsymbol{h}))}{\sum_{l=1}^{N} \exp(s_{l}(\boldsymbol{h}))} \cdot f_{j}(\boldsymbol{h}),$$

where  $G(h) \coloneqq softmax(s_1(\mathbf{h}), \dots, s_N(\mathbf{h}))$ .





#### **Mixture of Experts** and Self-Attention



#### Mixture of Experts and Self-Attention



• Define N gating function  $G_i$  with the score function for the  $j^{\text{th}}$  expert of the  $i^{\text{th}}$  gating  $s_{i,j}$ :

$$s_{i,j}(X) \coloneqq \frac{\boldsymbol{X}^{\mathsf{T}} \boldsymbol{E}_{i}^{\mathsf{T}} \boldsymbol{W}_{l}^{\boldsymbol{Q}} \boldsymbol{W}_{l}^{\boldsymbol{K}^{\mathsf{T}}} \boldsymbol{E}_{j} \boldsymbol{X}}{\sqrt{d_{\nu}}} = \frac{\boldsymbol{X}_{i}^{\mathsf{T}} \boldsymbol{W}_{l}^{\boldsymbol{Q}} \boldsymbol{W}_{l}^{\boldsymbol{K}^{\mathsf{T}}} \boldsymbol{X}_{j}}{\sqrt{d_{\nu}}}$$

for  $i, j \in [N]$ .

#### **Mixture of Experts and** Self-Attention



• Define N gating function  $G_i$  with the score function for the  $j^{\text{th}}$  expert of the  $i^{\text{th}}$  gating  $s_{i,j}$ :

$$s_{i,j}(X) \coloneqq \frac{\boldsymbol{X}^{\mathsf{T}} \boldsymbol{E}_{i}^{\mathsf{T}} \boldsymbol{W}_{l}^{\boldsymbol{Q}} \boldsymbol{W}_{l}^{\boldsymbol{K}^{\mathsf{T}}} \boldsymbol{E}_{j} \boldsymbol{X}}{\sqrt{d_{\boldsymbol{v}}}} = \frac{\boldsymbol{x}_{i}^{\mathsf{T}} \boldsymbol{W}_{l}^{\boldsymbol{Q}} \boldsymbol{W}_{l}^{\boldsymbol{K}^{\mathsf{T}}} \boldsymbol{x}_{j}}{\sqrt{d_{\boldsymbol{v}}}}$$

for  $i, j \in [N]$ .

• Define N experts  $f_j$ :

$$f_j(X) \coloneqq W_l^{V^{\mathsf{T}}} E_j X = W_l^{V^{\mathsf{T}}} x_j$$



We can express the output of the  $l^{th}$  head as follows:

$$\boldsymbol{h}_{l} = \left[\boldsymbol{h}_{l,1}, \dots, \boldsymbol{h}_{l,N}
ight]^{\mathsf{T}} \in \mathbb{R}^{N imes d_{v}}$$

$$\boldsymbol{h}_{l,i} = \sum_{j=1}^{N} \frac{\exp\left(s_{i,j}(\boldsymbol{X})\right)}{\sum_{k=1}^{N} \exp\left(s_{i,k}(\boldsymbol{X})\right)} f_{j}(\boldsymbol{X})$$

We can interpret each head in a multi-head self-attention layer as a multi-gate mixture of experts architecture. Prefix Tuning via the Perspective of Mixture of Experts • Prefix tuning can be interpreted as the introduction of new experts to customize the pre-trained model for a specific task

$$\boldsymbol{p}^{K} = \left[\boldsymbol{p}_{1}^{K}, \dots, \boldsymbol{p}_{L}^{K}\right]^{\mathsf{T}} \in \mathbb{R}^{L \times d}, \boldsymbol{p}^{V} = \left[\boldsymbol{p}_{1}^{V}, \dots, \boldsymbol{p}_{L}^{V}\right]^{\mathsf{T}} \in \mathbb{R}^{L \times d}$$

• Define new prefix experts along with their corresponding new score functions:

$$f_{N+j}(\boldsymbol{x}) \coloneqq W_l^{V^{\mathsf{T}}} \boldsymbol{p}_j^V,$$

$$s_{i,N+j}(x) \coloneqq \frac{\boldsymbol{x}^{\mathsf{T}} \boldsymbol{E}_{i}^{\mathsf{T}} \boldsymbol{W}_{l}^{\boldsymbol{Q}} \boldsymbol{W}_{l}^{\boldsymbol{K}^{\mathsf{T}}} \boldsymbol{p}_{j}^{\boldsymbol{K}}}{\sqrt{d_{\boldsymbol{\nu}}}} = \frac{\boldsymbol{x}_{i}^{\mathsf{T}} \boldsymbol{W}_{l}^{\boldsymbol{Q}} \boldsymbol{W}_{l}^{\boldsymbol{K}^{\mathsf{T}}} \boldsymbol{p}_{j}^{\boldsymbol{K}}}{\sqrt{d\boldsymbol{\nu}}}$$

for  $i \in [N]$  and  $j \in [L]$ .



#### Linear gating prefix MoE model



#### Linear gating prefix MoE model

Parameter estimation rate is  $O(1/log(n)^{\tau})$ .

Requires HUGE amount of data!

• Modify the linear gating prefix MoE model:

$$\hat{s}_{i,N+j}(\boldsymbol{X}) = s_{i,N+j}(\boldsymbol{X}) + \alpha \cdot \sigma \left(\tau \cdot s_{i,N+j}(\boldsymbol{X})\right), \\ i \in [N], \ j \in [L]$$

where  $\alpha, \tau$  are scalar factors,  $\sigma$  is a nonlinear activation function



• Modify the linear gating prefix MoE model:

 $\hat{s}_{i,N+j}(\boldsymbol{X}) = s_{i,N+j}(\boldsymbol{X}) + \alpha \cdot \sigma \left( \tau \cdot s_{i,N+j}(\boldsymbol{X}) \right), \\ i \in [N], j \in [L]$ 

where  $\alpha, \tau$  are scalar factors,  $\sigma$  is a nonlinear activation function



• Modify the linear gating prefix MoE model:

$$\hat{s}_{i,N+j}(\boldsymbol{X}) = \boldsymbol{s}_{i,N+j}(\boldsymbol{X}) + \alpha \cdot \sigma \left( \tau \cdot \boldsymbol{s}_{i,N+j}(\boldsymbol{X}) \right), \\ i \in [N], \ j \in [L]$$

where  $\alpha, \tau$  are scalar factors,  $\sigma$  is a nonlinear activation function



• We prove that estimating parameters in the non-linear residual gating prefix MoE model is statistically efficient in terms of the number of data.

| Model                                 | Parameter<br>estimation rate        | Number of data                      |
|---------------------------------------|-------------------------------------|-------------------------------------|
| Linear gating prefix<br>MoE           | $O(1/\log(n)^{\tau})$               | Exponential $exp(\epsilon^{-\tau})$ |
| Non-linear residual gating prefix MoE | $O\left(\sqrt[4]{\log(n)/n}\right)$ | Polynomial $\epsilon^{-4}$          |
|                                       |                                     |                                     |

#### **Experiments**

|          |              | Split CIFAR-100  |              |                 | Split ImageNet-R |              |                 |
|----------|--------------|------------------|--------------|-----------------|------------------|--------------|-----------------|
| ΡΤΜ      | Method       | FA (个)           | CA (个)       | FM (↓)          | FA (个)           | CA (个)       | FM (↓)          |
| Sup-21K  | L2P          | 83.06 ± 0.17     | 88.27 ± 0.71 | 5.61 ± 0.32     | 67.53 ± 0.44     | 71.98 ± 0.52 | 5.84 ± 0.38     |
|          | DualPrompt   | 87.30 ± 0.27     | 91.23 ± 0.65 | 3.87 ± 0.43     | 70.93 ± 0.08     | 75.67 ± 0.52 | 5.47 ± 0.19     |
|          | S-Prompt     | 87.57 ± 0.42     | 91.38 ± 0.69 | 3.63 ± 0.41     | 69.88 ± 0.51     | 74.25 ± 0.55 | 4.73 ± 0.47     |
|          | CODA-Prompt  | 86.94 ± 0.63     | 91.57 ± 0.75 | $4.04 \pm 0.18$ | 70.03 ± 0.47     | 74.26 ± 0.24 | 5.17 ± 0.22     |
|          | HiDe-Prompt  | 92.61 ± 0.28     | 94.03 ± 0.01 | $1.50 \pm 0.28$ | 75.06 ± 0.12     | 76.60 ± 0.01 | 4.09 ± 0.13     |
|          | NoRGa (Ours) | 94.48 ± 0.13     | 95.83 ± 0.37 | 1.44 ± 0.27     | 75.40 ± 0.39     | 79.52 ± 0.07 | 4.59 ± 0.07     |
| iBOT-21K | L2P          | 79.13 ± 1.25     | 85.13 ± 0.05 | 7.50 ± 1.21     | 61.31 ± 0.50     | 68.81 ± 0.52 | 10.72 ± 0.40    |
|          | DualPrompt   | 78.84 ± 0.47     | 86.16 ± 0.02 | 8.84 ± 0.67     | 58.69 ± 0.61     | 66.61 ± 0.67 | 11.75 ± 0.92    |
|          | S-Prompt     | 79.14 ± 0.65     | 85.85 ± 0.17 | 8.23 ± 1.15     | 57.96 ± 1.10     | 66.42 ± 0.71 | 11.27 ± 0.72    |
|          | CODA-Prompt  | 80.83 ± 0.27     | 87.02 ± 0.20 | 7.50 ± 0.25     | 61.22 ± 0.35     | 66.76 ± 0.37 | 9.66 ± 0.20     |
|          | HiDe-Prompt  | 93.02 ± 0.15     | 94.56 ± 0.05 | 1.26 ± 0.13     | 70.83 ± 0.17     | 73.23 ± 0.08 | 6.77 ± 0.23     |
|          | NoRGa (Ours) | 94.76 ± 0.15     | 95.86 ± 0.31 | $1.34 \pm 0.14$ | 73.06 ± 0.26     | 77.46 ± 0.42 | 6.88 ± 0.49     |
| iBOT-1K  | L2P          | 75.51 ± 0.88     | 82.53 ± 1.10 | 6.80 ± 1.70     | 59.43 ± 0.28     | 66.83 ± 0.92 | 11.33 ± 1.25    |
|          | DualPrompt   | $76.21 \pm 1.00$ | 83.54 ± 1.23 | 9.89 ± 1.81     | 60.41 ± 0.76     | 66.87 ± 0.41 | 9.21 ± 0.43     |
|          | S-Prompt     | $76.60 \pm 0.61$ | 82.89 ± 0.89 | 8.60 ± 1.36     | 59.56 ± 0.60     | 66.60 ± 0.13 | $8.83 \pm 0.81$ |
|          | CODA-Prompt  | 79.11 ± 1.02     | 86.21 ± 0.49 | 7.69 ± 1.57     | 66.56 ± 0.68     | 73.14 ± 0.57 | 7.22 ± 0.38     |
|          | HiDe-Prompt  | 93.48 ± 0.11     | 95.02 ± 0.01 | $1.63 \pm 0.10$ | 71.33 ± 0.21     | 73.62 ± 0.13 | 7.11 ± 0.02     |
|          | NoRGa (Ours) | 94.01 ± 0.04     | 95.11 ± 0.35 | 1.61 ± 0.30     | 72.77 ± 0.20     | 76.55 ± 0.46 | 7.10 ± 0.39     |

#### **Experiments**

| Method                                                   | Split CIFAR-100                         |                                         | Split CUB-200                           |                                         |  |
|----------------------------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------|--|
|                                                          | Sup-21K                                 | iBOT-21K                                | Sup-21K                                 | iBOT-21K                                |  |
| HiDe-Prompt<br>NoRGa tanh<br>NoRGa sigmoid<br>NoRGa gelu | 92.61<br>94.36<br><b>94.48</b><br>94.05 | 93.02<br><b>94.76</b><br>94.69<br>94.63 | 86.56<br>90.87<br><b>90.90</b><br>90.74 | 78.23<br><b>80.69</b><br>80.18<br>80.54 |  |

# Conclusion

- Reveals a novel connection between **Prefix Tuning**, a popular prompt implementation technique, and **Mixture of Experts**.
- Proposes Non-linear Residual Gates (NoRGa), an innovative gating mechanism.
- Achieves state-of-the-art performance across various **continual learning benchmarks** and pretraining settings.



#### **THANK YOU FOR YOUR ATTENTION!**

**Mixture of experts meets Prompt-based Continual Learning** 

Minh Le<sup>3</sup>, An Nguyen<sup>2\*</sup>, Huy Nguyen<sup>1\*</sup>, Trang Nguyen<sup>3\*</sup>,

Trang Pham<sup>3</sup>\*, Linh Van Ngo<sup>2</sup>, Nhat Ho<sup>1</sup>

<sup>1</sup> University of Texas at Austin <sup>2</sup> Hanoi University of Science and Technology <sup>3</sup> VinAl Research

