

Leveraging Drift to Improve Sample Complexity of Variance Exploding Diffusion Models

Ruofeng Yang¹, Zhijie Wang¹, Bo jiang¹, Shuai Li^{1,*}

1. Shanghai Jiao Tong University

The Paradigm of Diffusion Models

- Diffusion model: Forward and reverse process.
- The general forward process:

$$
dX_t = f(X_t, t)dt + g(t)dB_t, X_0 \sim q_0 \in \mathbb{R}^d
$$

• Two common forward processes:

(1) Variance Preserving (VP): $f(X_t, t) = -$ 1 $\frac{1}{2}X_t, g(t) = 1$ (2) Variance Exploding (VE): $f(X_t, t) = 0$, $g(t) = \sqrt{d\sigma_t^2/dt}$ ($\sigma_t^2 = t$ or t^2

The Reverse Process

• Reverse the forward process \rightarrow Reverse process

$$
X_{t} = \left[f(X_{t}, t) - \frac{1 + \eta^{2}}{2} g^{2}(t) \nabla_{x} \log q_{t}(X_{t}) \right] dt + \eta g(t) dB_{t}, \eta \in [0, 1]
$$

- $\eta = 1 \rightarrow$ Reverse SDE (Stochastic sampler)
	- $\eta = 0 \rightarrow$ Reverse probability flow ODE (PFODE, deterministic sampler)

The Current Sample Complexity Results

Many works assume an accurate enough score function

 $\log q_t(X, t) - s_\theta(X, t) \|_2^2 \leq \epsilon_{score}^2$

and analyze the sample complexity $K = (T-\delta)/\gamma_K$ to guarantee $Dis\big(p_{t_K},q_0\big)\leq \epsilon.$

- VP-based models is well-studies and require weakly bounded support assumption (a)Reverse SDE: $\frac{1}{68}$ $\epsilon_{W_2}^8 \epsilon_{TV}^2$ result [1] $\qquad \qquad$ (b) Reverse PFODE: $\frac{1}{e^8}$ $\epsilon^8_{W_2} \epsilon_{TV}$ [2]
- VE-based models lacks of analysis and require strong assumption

(a)Reverse SDE: $\frac{1}{6}$ $\frac{1}{\epsilon_{W_2}^8 \epsilon_{TV}^4}$ result under the log-Sobelev inequality (LSI) [3]

(b) Reverse PFODE: Lack

Motivations

- Variance exploding (VE)-based diffusion model has great performance.
- The sample complexity of VE-based models is larger than variance preserving (VP) based models.

What is the source of large sample complexity of VE-based Models?

A General Convergence Guarantee (Reverse SDE)

Theorem 1. Under the bounded support assumption (weaker than LSI), for VP and VE-based models \bigcap

$$
TV(p_{t_K}, q_0) \le \frac{\overline{D}\sqrt{m_T}}{\sigma_T} + \frac{R^2\sqrt{d}}{\sigma_\delta^4} \sqrt{\overline{\gamma}_K \sigma_T^2 T g^2(T)} + \epsilon_{score} \sqrt{g^2(T)T} \le \overline{O}(\epsilon_{TV})
$$

Reverse Beginning Error
Forward Convergence Rate

$$
TV(N(0, \sigma_T^2), q_T)
$$

• Balance: (a) T determined by the first term and (b) discretization part depends on T

• VP enjoy an exponential-decay first term $m_T = e^{-T}$ and $\sigma_T = 1 \rightarrow$

A logarithmic $T = \log(1/\epsilon_{TV})$

• VE has a polynomial-decay one $m_T^2 = 1$ and $\sigma_T^2 = poly(T) \rightarrow$

Large sample complexity

Core Contribution 1: Drifted VESDE

Intuition: Lacks of the drift term $f(X_t, t) \rightarrow$ Slow forward convergence rate \rightarrow

Large sample complexity

Solution Introduce a drift term to VESDE: Drifted VESDE

$$
dX_t = -\frac{1}{\tau} \beta_t X_t dt + \sqrt{2\beta_t} dB_t, where \tau \in [1, T^2], \beta_t \in [1, t^2]
$$

• Drifted VESDE covers class forward processes

(a) $\tau = 1$, $\beta_t = 1 \rightarrow \text{VP}$; (b) $\tau = T$, $\beta_t = 1 \rightarrow \text{VE}$ ($\sigma_t^2 = t$); (c) $\tau = T^2$, $\beta_t = t \rightarrow \text{VE}$ ($\sigma_t^2 = t^2$)

• Go beyond: With an aggressive β_t (e.g. $\tau = T^2$ and $\beta_t = t^2$),

Drifted VESDE balances different error terms

Drifted VESDE Balances Different Error Term

Corollary 1. For drifted VESDE ($\tau = T^2$) with $\beta_t = t^2$, it enjoys e^{-T} forward convergence guarantee. Assume $\epsilon_{score} \leq \tilde{O}(\epsilon_{TV})$, the sample complexity is

 $K \leq \tilde{O}(1/(\epsilon_{W_2}^8 \epsilon_{TV}^2))$

- This result is the same with VP-based models.
- Due to the logarithmic T , different from the high order requirement $\epsilon_{score} \leq \epsilon_{TV}^2$ of pure VESDE, ϵ_{score} has the same order with ϵ_{TV} .

Contribution 2: The Guarantee for VE with PFODE

• The unified tangent-based framework (Control of high order of score)

$$
\|\nabla Y_{0,t_K}\| \le \exp\left(\frac{R^2}{\delta^2} + \frac{1-\eta^2}{2} \int_0^{t_K} \frac{g^2(u)}{\sigma_T^2} du\right)
$$

- For VP forward process, \int_0^a $t_K g^2(u)$ σ_T^2 $\frac{2}{2} u^2 du = T \rightarrow \exp(T)$ term
- For VE forward process, $g^2(t) = t$ and $\sigma_T^2 = T^2 \rightarrow$ Constant term

Theorem 2. Under the bounded support and ground-truth score assumption, for VE with PFODE

$$
W_1(p_{t_K}, q_0) \le \frac{\overline{D}\sqrt{m_T}}{\sigma_T} + \exp\left(\frac{1}{\delta^2}\right) Poly(T)\sqrt{\overline{\gamma}_K}
$$

Real-world Experiments

(b) Drifted VESDE (More Examples)

- Setting: $\tau = T$, $\beta_t = 1$
- Conservative Drifted VESDE Benefits from VESDE without Training:

More detail such as hair and beard details

Conclusion

- (Reverse SDE) Drifted VESDE: balance error terms and improve the results
- (Reverse PFODE) The Exploding property of VE: The first quantitative convergence guarantee without $exp(T)$
- Furture work
	- Polynomial Sample Complexity for VE with PFODE

Thanks!

Q&A

References

- [1] Chen, S., Chewi, S., Li, J., Li, Y., Salim, A., & Zhang, A. R. (2022). Sampling is as easy as learning the score: theory for diffusion models with minimal data assumptions. arXiv preprint arXiv:2209.11215.
- [2] Chen, S., Chewi, S., Lee, H., Li, Y., Lu, J., & Salim, A. (2024). The probability flow ode is provably fast. Advances in Neural Information Processing Systems, 36.
- [3] Lee, H., Lu, J., & Tan, Y. (2022). Convergence for score-based generative modeling with polynomial complexity. Advances in Neural Information Processing Systems, 35, 22870-22882.