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The Paradigm of Diffusion Models
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• Diffusion model: Forward and reverse process.

• The general forward process:

𝑑𝑋𝑡 = 𝑓 𝑋𝑡 , 𝑡 𝑑𝑡 + 𝑔 𝑡 𝑑𝐵𝑡 , 𝑋0 ∼ 𝑞0 ∈ ℝ𝑑

• Two common forward processes: 

(1) Variance Preserving (VP): 𝑓 𝑋𝑡 , 𝑡 = −
1

2
𝑋𝑡 , 𝑔 𝑡 = 1

(2) Variance Exploding (VE): 𝑓 𝑋𝑡 , 𝑡 = 0, 𝑔 𝑡 = 𝑑𝜎𝑡
2/𝑑𝑡 𝜎𝑡

2 = 𝑡 𝑜𝑟 𝑡2



The Reverse Process
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• Reverse the forward process → Reverse process

𝑋𝑡 = 𝑓 𝑋𝑡 , 𝑡 −
1+𝜂2

2
𝑔2 𝑡 ∇𝑥 log 𝑞𝑡 𝑋𝑡 𝑑𝑡 + 𝜂𝑔 𝑡 𝑑𝐵𝑡 , 𝜂 ∈ 0,1

• 𝜂 = 1 → Reverse SDE (Stochastic sampler)

𝜂 = 0 → Reverse probability flow ODE (PFODE, deterministic sampler) 



The Current Sample Complexity Results 

4

Many works assume an accurate enough score function 

log 𝑞𝑡 𝑋, 𝑡 − 𝑠𝜃 𝑋, 𝑡 2
2 ≤ 𝜖𝑠𝑐𝑜𝑟𝑒

2

and analyze the sample complexity 𝐾 = (𝑇 − 𝛿)/𝛾𝐾 to guarantee 𝐷𝑖𝑠 𝑝𝑡𝐾 , 𝑞0 ≤ 𝜖.

• VP-based models is well-studies and require weakly bounded support assumption

• VE-based models lacks of analysis and require strong assumption

(a)Reverse SDE: 
1

𝜖𝑊2
8 𝜖𝑇𝑉

2 result [1] (b) Reverse PFODE:
1

𝜖𝑊2
8 𝜖𝑇𝑉

[2] 

(a)Reverse SDE:
1

𝜖𝑊2
8 𝜖𝑇𝑉

4 result under the log-Sobelev inequality (LSI) [3]

(b) Reverse PFODE: Lack



Motivations
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• Variance exploding (VE)-based diffusion model has great performance.

• The sample complexity of VE-based models is larger than variance preserving 

(VP) based models.

What is the source of large sample complexity of VE-based Models?



A General Convergence Guarantee (Reverse SDE)
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• Balance: (a) 𝑇 determined by the first term and (b) discretization part depends on 𝑇

• VP enjoy an exponential-decay first term 𝑚𝑇 = 𝑒−𝑇 and 𝜎𝑇 = 1 →

• VE has a polynomial-decay one 𝑚𝑇 = 1 and 𝜎𝑇
2 = 𝑝𝑜𝑙𝑦 𝑇 →

𝑇𝑉 𝑝𝑡𝐾 , 𝑞0 ≤
ഥ𝐷 𝑚𝑇

𝜎𝑇
+
𝑅2 𝑑

𝜎𝛿
4 ҧ𝛾𝐾𝜎𝑇

2𝑇𝑔2 𝑇 + 𝜖𝑠𝑐𝑜𝑟𝑒 𝑔2 𝑇 𝑇

Theorem 1. Under the bounded support assumption (weaker than LSI), for 
VP and VE-based models

𝑇𝑉 𝑁 0, 𝜎𝑇
2 , 𝑞𝑇

Reverse Beginning Error Discretization Approximated Score

≤ ෨𝑂 𝜖𝑇𝑉

?

Large sample complexity

A logarithmic 𝑇 = log 1/𝜖𝑇𝑉

Forward Convergence Rate



Core Contribution 1: Drifted VESDE
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Intuition: Lacks of the drift term 𝑓 𝑋𝑡 , 𝑡 → Slow forward convergence rate→

Large sample complexity

𝑑𝑋𝑡 = −
1

𝜏
𝛽𝑡𝑋𝑡𝑑𝑡 + 2𝛽𝑡𝑑𝐵𝑡 , 𝑤ℎ𝑒𝑟𝑒 𝜏 ∈ 1, 𝑇2 , 𝛽𝑡 ∈ [1, 𝑡2]

Solution Introduce a drift term to VESDE: Drifted VESDE

• Drifted VESDE covers class forward processes

(a) 𝜏 = 1, 𝛽𝑡 = 1 → VP; (b) 𝜏 = 𝑇, 𝛽𝑡 = 1 → VE (𝜎𝑡
2 = 𝑡); (c) 𝜏 = 𝑇2, 𝛽𝑡 = 𝑡 →VE (𝜎𝑡

2 = 𝑡2)

• Go beyond: With an aggressive 𝛽𝑡 (e.g. 𝜏 = 𝑇2 and 𝛽𝑡 = 𝑡2), 

Drifted VESDE balances different error terms



Drifted VESDE Balances Different Error Term
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Corollary 1. For drifted VESDE (𝜏 = 𝑇2) with 𝛽𝑡 = 𝑡2, it enjoys 𝑒−𝑇 forward 
convergence guarantee. Assume 𝜖𝑠𝑐𝑜𝑟𝑒 ≤ ෨𝑂 𝜖𝑇𝑉 , the sample complexity is 

• This result is the same with VP-based models.

• Due to the logarithmic 𝑇, different from the high order requirement 

𝜖𝑠𝑐𝑜𝑟𝑒 ≤ 𝜖𝑇𝑉
2 of pure VESDE, 𝜖𝑠𝑐𝑜𝑟𝑒 has the same order with 𝜖𝑇𝑉.

𝐾 ≤ ෨𝑂 1/(𝜖𝑊2

8 𝜖𝑇𝑉
2 )



Contribution 2: The Guarantee for VE with PFODE
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• The unified tangent-based framework (Control of high order of score)

• For VP forward process, 0
𝑡𝐾 𝑔2 𝑢

𝜎𝑇
2 𝑑𝑢 = 𝑇 → exp 𝑇 term

• For VE forward process, 𝑔2 𝑡 = 𝑡 and 𝜎𝑇
2 = 𝑇2 → Constant term

∇𝑌0,𝑡𝐾 ≤ exp
𝑅2

𝛿2
+
1 − 𝜂2

2
න
0

𝑡𝐾 𝑔2 𝑢

𝜎𝑇
2 𝑑𝑢

Theorem 2. Under the bounded support and ground-truth score assumption, 
for VE with PFODE

𝑊1 𝑝𝑡𝐾 , 𝑞0 ≤
ഥ𝐷 𝑚𝑇

𝜎𝑇
+ exp

1

𝛿2
𝑃𝑜𝑙𝑦 𝑇 ҧ𝛾𝐾



Real-world Experiments
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• Setting: 𝜏 = 𝑇, 𝛽𝑡 = 1

• Conservative Drifted VESDE Benefits from VESDE without Training:

More detail such as hair and beard details



Conclusion
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• (Reverse SDE) Drifted VESDE: balance error terms and improve the results

• (Reverse PFODE) The Exploding property of VE: The first quantitative 

convergence guarantee without exp 𝑇

• Furture work

• Polynomial Sample Complexity for VE with PFODE  



Thanks!
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Q&A
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