

A scalable generative model for dynamical system reconstruction from neuroimaging data

Eric Volkmann^{1,2,*}, Alena Brändle^{1,3,*}, Daniel Durstewitz^{1,3, †}, Georiga Koppe^{3, †}

¹Department of Theoretical Neuroscience, Central Institute of Mental Health (CIMH)

2 Institute for Machine Learning, JKU Linz

3 Interdisciplinary Center for Scientific Computing, Heidelberg University

Dynamical Systems Reconstruction (DSR)

Generalized Teacher Forcing (GTF)¹

¹Hess et al, ICML 2023, Generalized teacher forcing for learning chaotic dynamics

Interpolate between forward-iterated states z_t and data-inferred states $\hat{z}_t = G_{\phi}^{-1}(x_t)$:

$$
\tilde{z}_t = F_{\theta} \big((1 - \alpha) z_{t-1} + \alpha \hat{z}_{t-1} \big), \qquad \alpha \in (0, 1)
$$

 \rightarrow optimal choice of α prevents EGP

DSR for convolved time series

Important empirical setting: observations are a convolution of signal of interest f and a impulse response filter h

$$
(f * h)[n] \coloneqq \sum_{m=-\infty}^{\infty} f[n-m]h[m]
$$

DSR for convolved time series

Important empirical setting: observations are a convolution of signal of interest f and a impulse response filter h

$$
(f * h)[n] \coloneqq \sum_{m=-\infty}^{\infty} f[n-m]h[m]
$$

Example: fMRI

- Signal of interest: neuronal activity
- Impulse response: hemodynamic response function (hrf)

• Modified observation equation

$$
\hat{x}_t = G_{\phi}(h * z_{\{t_0 : t\}})
$$

• Latent states are convolved over time with filter function h

• Modified observation equation

$$
\hat{x}_t = G_{\phi}(h * z_{\{t_0 : t\}})
$$

- Latent states are convolved over time with filter function h
- **Problem**: non-invertible observation model

 \rightarrow How to calculate forcing targets at t for GTF?

Wiener deconvolution filter
$$
G(k) = \frac{\tilde{Y}^*(k)H(k)}{|\tilde{Y}(k)|^2H(k)+\tilde{N}(k)}
$$

Deconvolution approach for fMRI time series motivated by Wu et al. (2021)

$$
\text{Wiener decomposition filter } G(k) = \frac{\tilde{Y}^*(k)H(k)}{|\tilde{Y}(k)|^2 H(k) + \tilde{N}(k)}\n\Bigg|
$$

1. Obtain estimate of the signal \tilde{y} and of noise \tilde{n} using Wavelet based methods

$$
\text{Wiener decomposition filter } G(k) = \frac{\tilde{Y}^*(k)H(k)}{|\tilde{Y}(k)|^2 H(k) + \tilde{N}(k)} \Bigg|
$$

- 1. Obtain estimate of the signal \tilde{y} and of noise \tilde{n} using Wavelet based methods
- 2. Use the power spectra of these estimates \tilde{Y}, \tilde{N} to compute G

Wiener deconvolution filter
$$
G(k) = \frac{\tilde{Y}^*(k)H(k)}{|\tilde{Y}(k)|^2H(k)+\tilde{N}(k)}\Bigg|
$$

- 1. Obtain estimate of the signal \tilde{y} and of noise \tilde{n} using Wavelet based methods
- 2. Use the power spectra of these estimates \tilde{Y}, \tilde{N} to compute G
- 3. Apply Wiener Deconvolution to obtain estimate of deconvoluted signal \tilde{x}

Wiener deconvolution filter
$$
G(k) = \frac{\tilde{Y}^*(k)H(k)}{|\tilde{Y}(k)|^2H(k)+\tilde{N}(k)}\Bigg|
$$

- 1. Obtain estimate of the signal \tilde{y} and of noise \tilde{n} using Wavelet based methods
- 2. Use the power spectra of these estimates \tilde{Y}, \tilde{N} to compute G
- 3. Apply Wiener Deconvolution to obtain estimate of deconvoluted signal \tilde{x}
- 4. Use estimate \tilde{x} in Teacher Forcing Algorithm

1. State space divergence D_{stsp}

Geometrical overlap of orbits in state space

$$
D_{stsp} = \int_{\mathbb{R}^N} p(\mathbf{x}) \frac{p(\mathbf{x})}{q(\mathbf{x})} d\mathbf{x}
$$

2. Power spectrum error D_{PSE}

Average Hellinger distance between power spectra

$$
D_{PSE} = \frac{1}{N} \sum_{i=1} N \left(1 - \int_{\mathbb{R}} \sqrt{f_i(\omega) g_i(\omega)} \, dx \right)^{\frac{1}{2}}
$$

3. Prediction error PE

n-step prediction error

$$
PE(n) = \frac{1}{N(T-n)} \sum_{t=1}^{T-n} ||x_{t+n} - \hat{x}_{t+n}||_2^2
$$

Unobserved latent trajectory

Distribution of learned λ_{max} values with/without GTF

ALN: Simulated fMRI data

Key finding: ConvSSM improves latent space reconstruction

ALN: Simulated fMRI data

Key finding: We can identify a successful DSR model using our measures on short time series

Correlation of DSR measures evaluted on short vs long testing time series

ALN: Simulated fMRI data

Key finding: Consistent DSR measures in observation and latent space for ConvSSM

Correlation of DSR measures evaluted in oberserved vs in latent space for ConvSSM

Application to experimental fMRI data

Key findings: ConvSSM outperforms other methods in DSR performance

Application to experimental fMRI data

Key findings:

- positive λ_{max} , indicating chaotic attractors
- Reliably Inferred λ_{max} differentiate between subjects

Outlook: Classification and Regression using DS features identified by ConvSSM

Thank you for your attention

Deutsche DFG Forschungsgemeinschaft

German Research Foundation

This work was supported by the German Research Foundation (DFG) within the collaborative research center TRR 265, subproject B08, granted to GK, TRR 265 subproject A06 granted to DD and GK, Germany's Excellence Strategy EXC 2181/1 – 390900948 (STRUCTURES), and the Hector II foundation.