

Machine Learning and Data Intensive Computing (Mining) LAB



# Adaptive Important Region Selection with Reinforced Hierarchical Search for Dense Object Detection

Dingrong Wang, Hitesh Sapkota, Qi Yu

Golisano College of Computing and Information Sciences Rochester Institute of Technology (RIT)

## Background

- Dense object detection enjoys a wide of **applications**, including *surveillance video tracking* by the police and *merchandise recognition* for online shopping.
- An inherently **challenging** is: it requires predicting the bounding boxes for all objects present in a given image irrespective of their shape, size, and number.
- The inborn complexity of images, such as **shadow/occlusion**, **image size**, **shape**, **color**, **and texture** could also pose a significant *hindrance* in the detection process resulting in a lower accuracy.
- Existing efforts have been made to address above key challenges, including two-stage (R-CNN [1]) and one-stage (RetinaNet [2], FCOS [3]) approaches.

[1] Girshick, Ross, et al. "Rich feature hierarchies for accurate object detection and semantic segmentation." Proceedings of the IEEE conference on computer vision and pattern recognition. 2014. [2] Lin, Tsung-Yi et al. "Focal Loss for Dense Object Detection." 2017 IEEE International Conference on Computer Vision (ICCV) (2017): 2999-3007. [3] Tian, Zhi, et al. "Fully convolutional one-stage 3d object detection on lidar range images." Advances in Neural Information Processing Systems 35 (2022): 34899-34911.

## Challenge



(a) GFocal

(b) AIRS

(c) GFocal-V2

(d) AIRS

Figure 1: Bounding boxes produced by GFocal [4], GFocal-V2 [5], and AIRS, where GFocal, GFocal-V2 still tend to generate unnecessary bounding boxes resulting from false positive anchors, comparing to the proposed AIRS model.

[4] Xiang Li, Wenhai Wang, Lijun Wu, Shuo Chen, Xiaolin Hu, Jun Li, Jinhui Tang, and Jian Yang. Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection. In NeurIPS, 2020. [5] Xiang Li, Wenhai Wang, Xiaolin Hu, Jun Li, Jinhui Tang, and Jian Yang. Generalized focal loss v2: Learning reliable localization quality estimation for dense object detection. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 11632–11641, June 2021.

# Methodology



#### Generation of Masked Evidential Q-value

We use masked evidential Q-value to select optimal action, and the reward is measured by target patch quality score resulting from that action.

$$q_{d,t} \sim \mathcal{N}(\cdot|\mu_{d,t}, \sigma_{d,t}^{2}), \ \mu_{d,t} \sim \mathcal{N}(\cdot|\gamma_{d,t}, \sigma_{d,t}^{2}\nu_{d,t}^{-1}), \ \sigma_{d,t}^{2} \sim \text{Inv-Gamma}(\cdot|\alpha_{d,t}, \beta_{d,t})$$
(1)  
$$q_{d,t} \sim \mathcal{N}\left(\cdot|\gamma_{d,t}, \frac{\beta_{d,t}}{(\alpha_{d,t} - 1)}\right)$$
(2)  
$$q_{d,t}^{e} = q_{d,t} + \lambda \text{Var}[\mu_{d,t}], \quad \text{Var}[\mu_{d,t}] = \frac{\mathbb{E}[\sigma_{d,t}^{2}]}{\nu_{d,t}} = \frac{\beta_{d,t}}{\nu_{d,t}(\alpha_{d,t} - 1)}$$
(3)

$$\widetilde{\mathbf{q}_{d,t}^e} = \mathbf{q}_{d,t}^e \otimes \mathbf{m}_{l,t}^d \tag{1}$$

### **Experiment Results**

 Table 1: Detection performance comparison on all three datasets along with their challenging subsets

| Category                              | Method            | MS COCO |                 |                 |                 |                    | Pascal VOC 2012 |                 |                          |                          |           | Open Image V4 |                 |                 |                 |                    |
|---------------------------------------|-------------------|---------|-----------------|-----------------|-----------------|--------------------|-----------------|-----------------|--------------------------|--------------------------|-----------|---------------|-----------------|-----------------|-----------------|--------------------|
|                                       |                   | AP      | $\mathbf{AP}^S$ | $\mathbf{AP}^M$ | $\mathbf{AP}^L$ | $\mathbf{AP}^{CH}$ | AP              | $\mathbf{AP}^S$ | $\mathbf{A}\mathbf{P}^M$ | $\mathbf{A}\mathbf{P}^L$ | $AP^{CH}$ | AP            | $\mathbf{AP}^S$ | $\mathbf{AP}^M$ | $\mathbf{AP}^L$ | $\mathbf{AP}^{CH}$ |
| Two-stage                             | Faster R-CNN [33] | 36.2    | 18.2            | 39.0            | 48.2            | 19.4               | 73.8            | 25.2            | 75.2                     | 78.4                     | 26.5      | 37.4          | 19.6            | 38.5            | 42.2            | 20.5               |
|                                       | Cascade R-CNN [7] | 42.8    | 23.7            | 45.5            | 55.2            | 22.5               | 82.7            | 29.5            | 73.6                     | 83.5                     | 28.6      | 38.6          | 25.4            | 40.4            | 44.8            | 23.7               |
|                                       | RepPoints [41]    | 41.0    | 23.6            | 44.1            | 51.7            | 21.2               | 81.3            | 29.1            | 74.4                     | 83.0                     | 27.6      | 39.1          | 24.2            | 39.1            | 42.5            | 21.5               |
|                                       | TridentNet [24]   | 42.7    | 23.9            | 46.6            | 56.6            | 20.5               | 82.5            | 29.5            | 64.3                     | 84.7                     | 28.4      | 40.5          | 26.2            | 41.9            | 45.8            | 20.4               |
|                                       | DETR [9]          | 42.0    | 20.5            | 45.8            | 61.1            | 17.5               | 80.2            | 25.1            | 62.8                     | 84.5                     | 26.3      | 39.6          | 23.5            | 41.5            | 45.9            | 17.8               |
|                                       | Co-DETR [49]      | 42.5    | 20.8            | 46.2            | 61.5            | 17.9               | 80.5            | 25.4            | 63.2                     | 84.9                     | 26.5      | 39.7          | 23.9            | 41.8            | 46.3            | 18.3               |
|                                       | EVA [14]          | 46.7    | 28.5            | 48.2            | 61.9            | 28.8               | 84.7            | 31.5            | 75.4                     | 86.5                     | 28.7      | 44.1          | 25.8            | 46.5            | 50.8            | 26.7               |
|                                       | DINO-4scale [44]  | 47.8    | 30.2            | 50.1            | 62.3            | 29.0               | 86.9            | 33.4            | 77.2                     | 88.5                     | 30.9      | 46.2          | 29.8            | 47.8            | 52.3            | 28.1               |
|                                       | DINO-5scale [44]  | 47.9    | 30.0            | 50.4            | 62.5            | 29.0               | 87.1            | 33.3            | 77.4                     | 88.6                     | 31.2      | 46.4          | 29.9            | 47.7            | 52.4            | 28.2               |
| One-stage                             | RetinaNet [26]    | 39.1    | 21.8            | 42.7            | 50.2            | 21.6               | 77.0            | 27.8            | 62.9                     | 81.5                     | 27.3      | 38.5          | 24.8            | 40.2            | 42.4            | 21.3               |
|                                       | FCOS [38]         | 41.5    | 24.4            | 44.8            | 51.6            | 23.5               | 83.3            | 31.4            | 64.2                     | 85.8                     | 30.5      | 40.3          | 26.1            | 41.8            | 45.4            | 23.2               |
|                                       | ATSS [45]         | 43.6    | 26.1            | 47.0            | 53.6            | 23.8               | 84.2            | 32.6            | 74.3                     | 86.9                     | 31.3      | 42.2          | 26.9            | 42.5            | 46.8            | 24.0               |
|                                       | SAPD [48]         | 43.5    | 24.9            | 46.8            | 54.6            | 22.4               | 83.8            | 31.5            | 75.3                     | 86.2                     | 29.5      | 41.1          | 25.9            | 41.6            | 45.8            | 23.5               |
|                                       | SpineNet [11]     | 41.5    | 23.3            | 45.0            | 58.0            | 21.2               | 82.6            | 29.3            | 73.5                     | 85.7                     | 27.4      | 40.2          | 25.8            | 41.2            | 45.3            | 21.6               |
| · · · · · · · · · · · · · · · · · · · | GFocal [23]       | 45.0    | 27.2            | 48.8            | 54.5            | 25.4               | 86.5            | 35.0            | 78.0                     | 90.5                     | 32.6      | 45.8          | 29.5            | 46.5            | 51.4            | 26.3               |
| Ours                                  | AIRS              | 48.3    | 32.1            | 48.5            | 54.3            | 29.4               | 88.7            | 37.3            | 79.0                     | 91.5                     | 35.6      | 47.5          | 31.5            | 48.1            | 53.1            | 29.0               |

#### More detailed analysis



Figure (a)-(b): Average number of detections per test image based on the bounding box area on MS COCO and OpenImages V4. Figure (c): Ablative study on epistemic uncertainty to deep Q-evaluation.