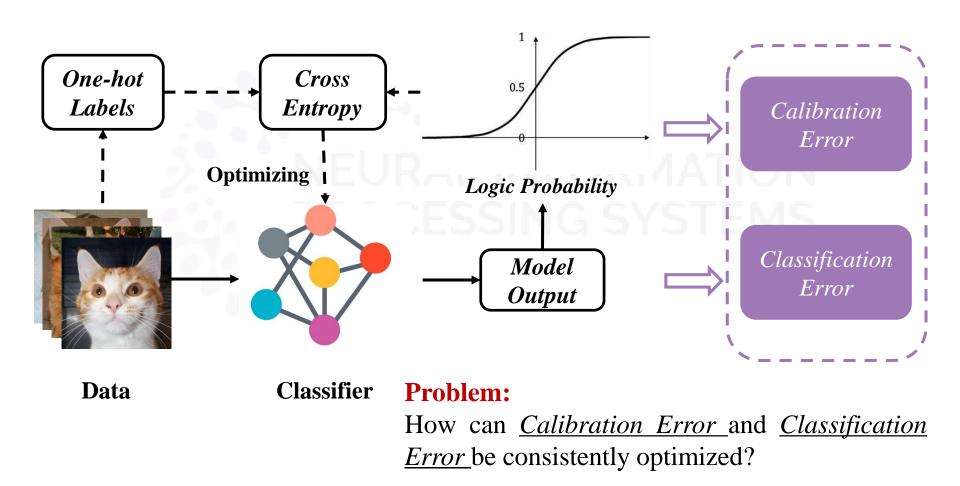


A PID Controller Approach for Adaptive Probabilitydependent Gradient Decay in Model Calibration

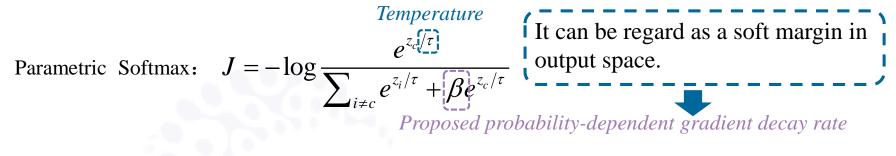
1ATION STEMS

Siyuan Zhang


Linbo Xie

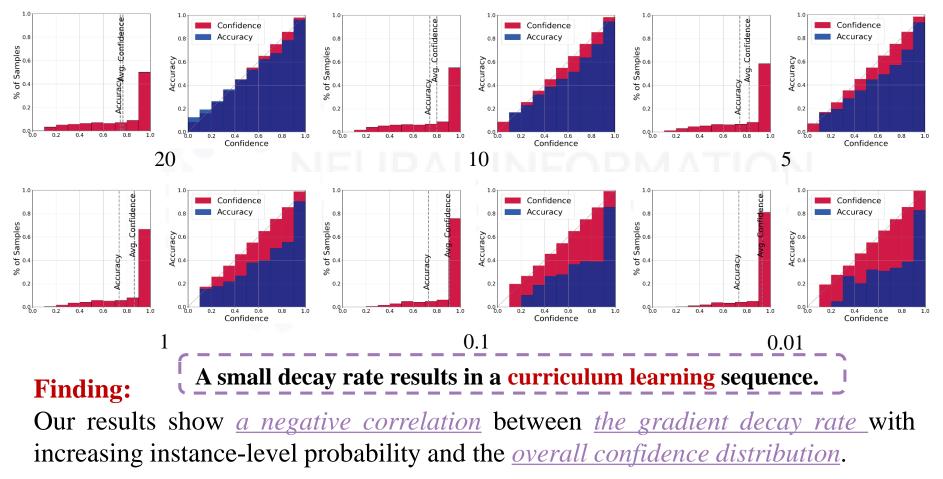
School of Internet of Things Engineering

Jiangnan University, Wuxi, China



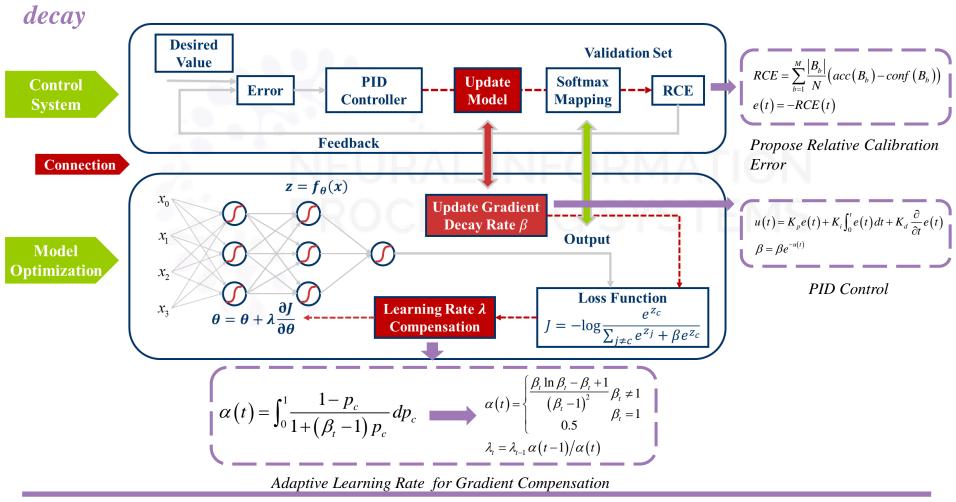
Motivation

Introduce probabilistic output $p_i = \frac{e^{z_i}}{e^{z_1 + \dots + e^{z_m}}}$ as an intermediate variable. Then we obtain:

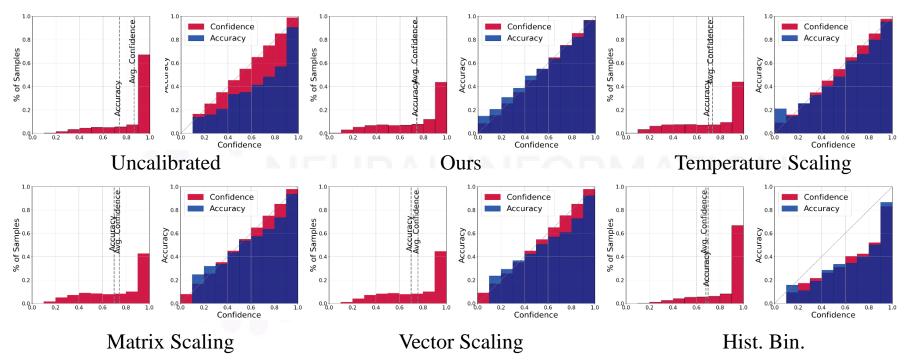

Finding:

<u>Probability-dependent gradient decay rate</u> is closely correlated with <u>model</u> <u>calibration</u>.

Motivation


Confidence and reliability diagrams with different gradient decay rate

Methodology


The framework of PID controller-based adaptive probability-dependent gradient

Some Results

1. Calibration performance with other post-processing calibration methods

Conclusion:

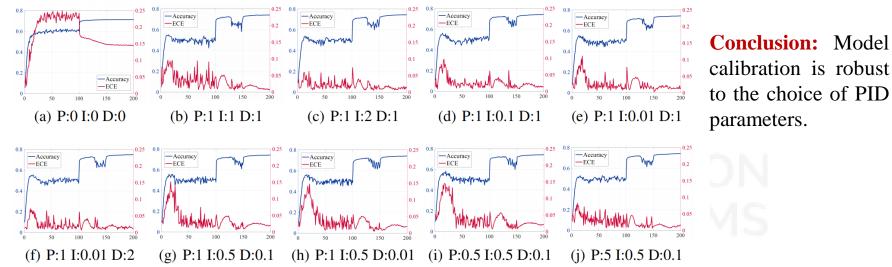
The experimental findings underscore the effectiveness of our approach by dynamically adjusting the gradient decay rate during the model optimization.

Some Results

2. Performance of consistent optimization in supervised learning

Methods	Models	CIFAR-10				CIFAR-100			
		ACC (%)	ECE	MCE	AdaECE	ACC (%)	ECE	MCE	AdaECE
Softmax	ResNet18 ResNet35 VGG16	$\begin{array}{c} 93.7{\scriptstyle\pm0.39}\\ 93.9{\scriptstyle\pm0.39}\\ 92.1{\scriptstyle\pm0.41}\end{array}$	$\begin{array}{c} 0.041 {\pm} 0.010 \\ 0.054 {\pm} 0.015 \\ 0.066 {\pm} 0.022 \end{array}$	$\begin{array}{c} 0.281 {\pm} 0.076 \\ 0.300 {\pm} 0.083 \\ 0.339 {\pm} 0.091 \end{array}$	$\begin{array}{c} 0.042{\scriptstyle\pm0.013}\\ 0.054{\scriptstyle\pm0.016}\\ 0.068{\scriptstyle\pm0.023}\end{array}$	$\begin{array}{c} 73.6 {\pm} 0.29 \\ 73.8 {\pm} 0.30 \\ 69.2 {\pm} 0.26 \end{array}$	$\begin{array}{c} 0.160 {\pm} 0.026 \\ 0.172 {\pm} 0.022 \\ 0.233 {\pm} 0.054 \end{array}$	$\begin{array}{c} 0.344{\pm}0.048\\ 0.351{\pm}0.077\\ 0.476{\pm}0.112\end{array}$	$\begin{array}{c} 0.160 {\pm} 0.026 \\ 0.172 {\pm} 0.023 \\ 0.236 {\pm} 0.053 \end{array}$
Cosface	ResNet18 ResNet35 VGG16	$\begin{array}{c} 93.9{\pm}0.45\\ \textbf{95.6}{\pm}0.42\\ 92.7{\pm}0.58\end{array}$	$\begin{array}{c} 0.053 {\pm} 0.011 \\ 0.048 {\pm} 0.012 \\ 0.067 {\pm} 0.019 \end{array}$	$\begin{array}{c} 0.352{\pm}0.072\\ 0.317{\pm}0.095\\ 0.390{\pm}0.101\end{array}$	$\begin{array}{c} 0.055 {\pm} 0.013 \\ 0.049 {\pm} 0.011 \\ 0.068 {\pm} 0.020 \end{array}$	$\begin{array}{c} 74.2 {\pm} 0.51 \\ 74.6 {\pm} 0.38 \\ 71.4 {\pm} 0.52 \end{array}$	$\begin{array}{c} 0.185{\pm}0.046\\ 0.181{\pm}0.065\\ 0.238{\pm}0.081\end{array}$	$\begin{array}{c} 0.501 {\pm} 0.162 \\ 0.488 {\pm} 0.127 \\ 0.567 {\pm} 0.125 \end{array}$	$\begin{array}{c} 0.183 {\pm} 0.050 \\ 0.178 {\pm} 0.063 \\ 0.233 {\pm} 0.085 \end{array}$
Center loss	ResNet18 ResNet35 VGG16	$\begin{array}{c} 94.5{\scriptstyle\pm0.41}\\ 95.5{\scriptstyle\pm0.51}\\ \textbf{93.1}{\scriptstyle\pm0.41}\end{array}$	$\begin{array}{c} 0.038 {\pm} 0.009 \\ 0.043 {\pm} 0.010 \\ 0.034 {\pm} 0.009 \end{array}$	$\begin{array}{c} 0.337 {\pm} 0.075 \\ 0.280 {\pm} 0.099 \\ 0.349 {\pm} 0.083 \end{array}$	$\begin{array}{c} 0.040 {\pm} 0.008 \\ 0.045 {\pm} 0.012 \\ 0.034 {\pm} 0.010 \end{array}$	$\begin{array}{c} 74.1 {\pm} 0.30 \\ 74.2 {\pm} 0.31 \\ \textbf{72.1} {\pm} 0.37 \end{array}$	$\begin{array}{c} 0.082{\pm}0.013\\ 0.098{\pm}0.031\\ 0.216{\pm}0.042\end{array}$	$\begin{array}{c} 0.222 {\pm} 0.071 \\ 0.250 {\pm} 0.096 \\ 0.472 {\pm} 0.104 \end{array}$	$\begin{array}{c} 0.085 {\pm} 0.015 \\ 0.101 {\pm} 0.030 \\ 0.231 {\pm} 0.045 \end{array}$
DCA	ResNet18 ResNet35 VGG16	$\begin{array}{c} 91.9{\pm}0.32\\ 92.3{\pm}0.43\\ 90.7{\pm}0.28\end{array}$	$\begin{array}{c} 0.020 {\pm} 0.006 \\ 0.035 {\pm} 0.012 \\ 0.027 {\pm} 0.008 \end{array}$	$\begin{array}{c} 0.156 {\pm} 0.038 \\ 0.186 {\pm} 0.046 \\ 0.255 {\pm} 0.078 \end{array}$	$\begin{array}{c} 0.022{\pm}0.007\\ 0.034{\pm}0.010\\ 0.027{\pm}0.008\end{array}$	$\begin{array}{c} 72.1 {\pm} 0.25 \\ 73.1 {\pm} 0.28 \\ 70.9 {\pm} 0.37 \end{array}$	$\begin{array}{c} 0.047 {\pm} 0.011 \\ 0.067 {\pm} 0.021 \\ 0.133 {\pm} 0.028 \end{array}$	$\begin{array}{c} 0.156 {\pm} 0.024 \\ 0.184 {\pm} 0.051 \\ 0.269 {\pm} 0.059 \end{array}$	$\begin{array}{c} 0.049 {\pm} 0.012 \\ 0.066 {\pm} 0.023 \\ 0.141 {\pm} 0.032 \end{array}$
Ours	ResNet18 ResNet35 VGG16	$\begin{array}{c} \textbf{95.0}{\scriptstyle \pm 0.41} \\ \textbf{95.6}{\scriptstyle \pm 0.51} \\ \textbf{92.6}{\scriptstyle \pm 0.35} \end{array}$	$\begin{array}{c} \textbf{0.007} {\pm 0.002} \\ \textbf{0.009} {\pm 0.002} \\ \textbf{0.011} {\pm 0.002} \end{array}$	$\begin{array}{c} \textbf{0.078} {\pm} 0.021 \\ \textbf{0.089} {\pm} 0.012 \\ \textbf{0.083} {\pm} 0.031 \end{array}$	$\begin{array}{c} \textbf{0.008} {\pm} 0.001 \\ \textbf{0.010} {\pm} 0.003 \\ \textbf{0.012} {\pm} 0.004 \end{array}$	$\begin{array}{c} \textbf{74.3} {\pm} 0.43 \\ \textbf{75.4} {\pm} 0.39 \\ \textbf{71.9} {\pm} 0.35 \end{array}$	$\begin{array}{c} \textbf{0.006} {\pm} 0.002 \\ \textbf{0.011} {\pm} 0.003 \\ \textbf{0.028} {\pm} 0.008 \end{array}$	$\begin{array}{c} \textbf{0.068} {\scriptstyle \pm 0.018} \\ \textbf{0.063} {\scriptstyle \pm 0.011} \\ \textbf{0.044} {\scriptstyle \pm 0.003} \end{array}$	$\begin{array}{c} \textbf{0.007} {\pm 0.002} \\ \textbf{0.014} {\pm 0.002} \\ \textbf{0.030} {\pm 0.010} \end{array}$

Conclusion:


Our proposed PID-based method with variable gradient decay rate ensures both model accuracy and calibration.

Some Results

3. Ablation experiments and analysis for PID controller

4. Ablation experiments of different optimizer

SGD	Adam	PID Controller Approach	Gradient Compensation	Accuracy	ECE	AdaECE
\checkmark	-	-	-	73.8%	0.172	0.172
\checkmark	-	\checkmark	-	72.5%	0.022	0.023
-	\checkmark	\checkmark	-	63.5%	0.023	0.024
\checkmark	-	\checkmark	\checkmark	74.7%	0.012	0.013

Conclusion: Adaptive learning rate for gradient compensation can significantly improve the performance of PID control-based calibration.

Thank you for your attention! ③

For more details, please refer to our paper !