LaKD: Length-agnostic Knowledge Distillation for Trajectory Prediction with Any Length Observations

Yuhang Li¹, Changsheng Li¹, Ruilin Lv¹, Rongqing Ll¹, Ye Yuan¹, Guoren Wang¹

¹Beijing institute of Technology

Background & Motivation

 Predicting the future trajectories of dynamic agents in traffic scenarios is a critical task in autonomous driving, enabling autonomous vehicles to make safe decisions.

Background & Motivation

 In real-world scenarios, there is often insufficient time to gather an adequate number of observed trajectory points. This poses a new and challenging problem for trajectory prediction, requiring models to make accurate predictions based on observed trajectories of arbitrary lengths.

Background & Motivation

• We note that longer trajectories often contain more temporal information, which can potentially lead to higher prediction accuracy compared to shorter trajectories. However, as the number of observed trajectory points increases, additional interference might be introduced.

Method

Experiment

Table 1: Comparisons of different methods on Argoverse 1 and Argoverse 2, evaluated using $min\overline{ADE}$, $min\overline{FDE}$ and \overline{MR} metrics. The best results are highlighted in bold.

Datasat	Mathada	K=1			K=6		
Dataset	Wiethous	$\min \overline{ADE}$	$\min \overline{FDE}$	MR	$\min \overline{ADE}$	$\min \overline{FDE}$	MR
Argoverse 1	HiVT-Orig	1.4733	3.1834	0.5267	0.7255	1.0740	0.1124
	HiVT-RM	1.4189	3.0599	0.5104	0.7070	1.0447	0.1053
	HiVT-DTO	1.3999	3.0262	0.5056	0.7032	1.0350	0.1039
	HiVT-FLN	1.4011	3.0288	0.5051	0.7026	1.0325	0.1033
	HiVT-LaKD	1.3317	2.8799	0.4901	0.6807	0.9864	0.0928
	QCNet-Orig	1.1656	2.4021	0.3860	0.5791	0.7399	0.0734
	QCNet-RM	1.0995	2.2550	0.3630	0.5684	0.7115	0.0703
Argoverse 1	QCNet-DTO	1.0708	2.2303	0.3563	0.5418	0.6848	0.0671
	QCNet-FLN	1.0631	2.2083	0.3579	0.5411	0.6680	0.0671
	QCNet-LaKD	0.9982	2.0718	0.3439	0.5240	0.6581	0.0640
17 17	HiVT-Orig	3.5973	8.3062	0.8518	1.5289	2.8261	0.4377
	HiVT-RM	3.6580	8.4889	0.8647	1.5245	2.8068	0.4716
nuScenes	HiVT-DTO	3.5860	8.2556	0.8514	1.5105	2.7379	0.4350
	HiVT-FLN	3.5640	8.1928	0.8488	1.5094	2.7489	0.4427
	HiVT-LaKD	3.4296	7.8882	0.8369	1.4793	2.6934	0.4329
	QCNet-Orig	4.3134	9.7857	0.8588	1.4719	2.5831	0.4600
	QCNet-RM	4.1723	9.4672	0.8622	1.5255	2.6303	0.4611
nuScenes	QCNet-DTO	4.1447	9.4552	0.8580	1.4653	2.5798	0.4317
	QCNet-FLN	4.1169	9.3639	0.8562	1.4676	2.5448	0.4344
	QCNet-LaKD	4.0663	9.2524	0.8523	1.4594	2.4901	0.4023
Argoverse 2	HiVT-Orig	2.5502	6.5586	0.7455	1.0561	2.1093	0.3275
	HiVT-RM	2.2848	6.0548	0.7249	0.9457	1.9283	0.2994
	HiVT-DTO	2.2769	6.0548	0.7275	0.9324	1.8946	0.2903
	HiVT-FLN	2.2786	6.0464	0.7240	0.9287	1.8838	0.2891
	HiVT-LaKD	2.2066	5.8769	0.7161	0.9183	1.8686	0.2791
Argoverse 2	QCNet-Orig	2.1006	5.2219	0.6299	0.8339	1.3849	0.1884
	QCNet-RM	1.7452	4.4404	0.5957	0.7508	1.3184	0.1671
	QCNet-DTO	1.7713	4.4900	0.5979	0.7454	1.2924	0.1671
	QCNet-FLN	1.6940	4.2373	0.5808	0.7370	1.2595	0.1596
	QCNet-LaKD	1.6574	4.1505	0.5753	0.7258	1.2420	0.1555

Table 2: Ablation study of our method on the Argoverse 1 dataset.

RM	LaKD	DSM	K=1			K=6		
			$\min \overline{\text{ADE}}$	$\min \overline{\text{FDE}}$	$\overline{\mathrm{MR}}$	$\min \overline{ADE}$	$\min \overline{\text{FDE}}$	MR
4. O			1.4733	3.1834	0.5267	0.7255	1.0740	0.1124
\checkmark			1.4189	3.0599	0.5104	0.7070	1.0447	0.1053
\checkmark	\checkmark		1.3619	2.9511	0.5051	0.6851	0.9965	0.0948
\checkmark	~	~	1.3317	2.8799	0.4901	0.6807	0.9864	0.0927

Table 3: Analysis of our method with different M on the Argoverse 1 dataset.

M	K=1			K=6			
	$\min \overline{ADE}$	$\min \overline{\text{FDE}}$	$\overline{\mathrm{MR}}$	$\min \overline{ADE}$	$\min \overline{FDE}$	MR	
2	1.3457	2.9116	0.4943	0.6808	0.9863	0.0930	
3	1.3317	2.8799	0.4901	0.6807	0.9864	0.0928	
4	1.3414	2.9017	0.4938	0.6814	0.9867	0.0934	
5	1.3563	2.9359	0.5010	0.6851	0.9973	0.0961	
6	1.3486	2.9198	0.4977	0.6878	1.0025	0.0943	

Experiment

Figure 3: Qualitative results on the Argoverse 2 dataset using (a) QCNet-Orig, (b) QCNet-FLN, and (c) QCNet-LaKD. The observed trajectories, ground-truth trajectories and predicted trajectories are shown in green, red and blue, respectively. Our predicted future trajectories are closer to the ground-truth, compared to other methods.

Thanks for your attention