NeurIPS 2024

TARP-VP: Towards Evaluation of Transferred Adversarial Robustness and Privacy on Label Mapping Visual Prompting Models

Presenter: Zhen Chen

Yi Zhang, Fu Wang, Xingyu Zhao, Xiaowei Huang, Wenjie Ruan

Outline

- Motivation
- White-box Adversarial Robustness of LM-VP
- Transferred Adversarial Robustness of LM-VP
- Privacy Evaluation of LM-VP

Motivation: Adversarial robustness and privacy trade-off

For a general deep learning model:

Figure 1: Trade-off between test accuracy and membership inference attacks of standard training and adversarial training along with training on CIFAR-10 with ℓ_{∞} threat model using ResNet18.

More severe privacy risks on AT:

- Larger generalization error
- Higher sensitivity
- **Robust overfitting** •

200

Label Mapping Visual Prompting Models

Design of Label Mapping Visual Prompting Models:

Design of Visual Prompting

Figure 2: Two ways to add prompts: (1) Top: rescale a target image to the source domain size and replace the edge of the image with prompts; (2) Bottom: rescale a target image to a size smaller than the source domain and add prompts to make it the same size as source domain.

Characteristic of LM-VP

(1) Insufficient training data in LM-VP

Lower sensitivity of LM-VP:

- Highest transferred adversarial robustness on 1000 subest training
- Similar standard accuracy on 10000 subst training

(a) Test Accuracy on Random 100 Subset Training

(b) Test Accuracy on Random 1000 Subset Training

18

(c) Test Accuracy on Random 10000 Subset Training (d) Test Accuracy on Whole Training Set Training set

Characteristic of LM-VP

(2) Rapid convergence and minimal generalization error of LM-VP

- Quickly achieve a near-optimal performance and then remain steady with continued training
- Minimal generalization error

White-box Adversarial Robustness of LM-VP

White-box adversarial robustness of LM-VP is largely influenced by the choice of pre-trained models and there is no clear pattern

White-Box Adversarial Robustness over Epochs LM-VP models under white-box adversarial attacks. ResNet50 0.5 ResNet152 **Standard Training** Adversarial Training Pre-trained models WideResNet 0.4 PGD-20 PGD-20 Natural_{te} Natural_{te} --- ViT Swin 23.10 ResNet50 80.52 8.33 0.80.3 ResNet152 84.76 57.09 14.24 0 0.2 Wideresnet 80.91 12.15 40.29 0 27.78 VIT 91.50 19.28 0 0.1 34.65 Swin 92.00 0 0 0.0 ConvNext 97.97 43.22 40.69 0 8 10 2 Epoch

Table 1: Best performance(%) on CIFAR-10 with different pre-trained models in Standard-Trained LM-VP models and Standard AT-Trained LM-VP models under white-box adversarial attacks.

Transferred Adversarial Robustness

Transferred adversarial robustness of standard-trained LM-VP

Table 2: Best performance(%) on CIFAR-10 with different pre-trained models in Standard-Trained LM-VP models under Threat models ResNet18 or WRN-34-10.

Best Performance on natural examples and adversarial examples								
Pre-trained models	Threat models	Natural $_{tr}$	$Natural_{te}$	PGD- 10_{tr}	PGD-20	CW-20	T/E	
ResNet50		87.73	86.30	31.14	35.61	34.30	251s	
ResNet152		90.39	89.51	36.76	35.99	35.67	440s	
WRN-50-2		87.77	86.78	37.73	39.76	38.90	381s	
VIT	ResNet18	94.91	92.67	51.25	51.95	50.70	589s	
Swin		94.78	92.71	56.46	57.80	57.34	1025	
ConvNext		99.33	98.28	88.70	89.11	89.37	2116	
EVA		99.66	98.54	86.95	87.40	87.56	2674	
Be	st Performance	on natural e	examples an	d adversarial	example	S		
Pre-trained models	Threat models	Natural $_{tr}$	$Natural_{te}$	PGD- 10_{tr}	PGD-20	CW-20	T/E	
ResNet50		87.18	85.87	30.33	32.32	30.98	-	
ResNet152		89.95	89.42	37.24	37.26	37.08	-	
WRN-50-2		87.97	87.01	38.25	41.36	39.90	-	
VIT	WRN-34-10	94.78	92.77	51.41	52.23	52.12	-	
Swin		95.08	92.8	55.23	59.20	57.54	-	
ConvNext		99.19	98.03	88.20	88.51	88.23	-	
EVA		99.64	98.45	86.21	86.98	87.24	-	

Transferred Adversarial Robustness

Transferred adversarial robustness of transferred AT-trained LM-VP:

Table 3: Best performance(%) on CIFAR-10 with different pre-trained models in Transfered AT-Trained LM-VP models under Threat model ResNet18.

reat models	Natural _{tr}	$Natural_{te}$	PGD- 10_{tr}	PGD-20	CW 20	T/E
				1 00 20	CW-20	I/E
ResNet18	68.84 68.83 69.68 86.23 89.32 97.79	70.37 77.08 70.42 86.64 89.74 98.02	64.10 63.39 62.07 77.49 80.72 92.61	63.01 63.95 62.86 75.34 79.14 91.63	61.78 62.92 60.89 74.87 77.89 91.02	671s 950s 875s 1380s 2205s 3446s
	ResNet18	68.83 69.68 86.23 89.32 97.79 98.64	68.83 77.08 69.68 70.42 86.23 86.64 89.32 89.74 97.79 98.02 98.64 98.32	68.83 77.08 63.39 69.68 70.42 62.07 86.23 86.64 77.49 89.32 89.74 80.72 97.79 98.02 92.61 98.64 98.32 93.19	68.83 77.08 63.39 63.95 69.68 70.42 62.07 62.86 86.23 86.64 77.49 75.34 89.32 89.74 80.72 79.14 97.79 98.02 92.61 91.63 98.64 98.32 93.19 92.43	68.83 77.08 63.39 63.95 62.92 69.68 70.42 62.07 62.86 60.89 86.23 86.64 77.49 75.34 74.87 89.32 89.74 80.72 79.14 77.89 97.79 98.02 92.61 91.63 91.02 98.64 98.32 93.19 92.43 91.50

Transferred AT significantly enhances the transferred adversarial robustness at the cost of reduced natural accuracy

MIA-based Privacy Analysis

Privacy Analysis of LM-VP models: (1) lower sensitivity of LM-VP models to training data (2) minimal generalization error (3) Prior knowledge embedded in different pre-trained models

$$MIA(\eta) = \frac{1}{2} \times \left(\frac{\sum_{(x,y)\in D_{\text{train}}} \mathbf{1} \left[f_{\theta}(x)_{y} \ge \eta \right]}{|D_{\text{train}}|} + \frac{\sum_{(x,y)\in D_{\text{test}}} \mathbf{1} \left[f_{\theta}(x)_{y} < \eta \right]}{|D_{\text{test}}|} \right)$$

$$\eta_{\text{optim}} = \arg \max_{\eta} MIA(\eta)$$

MIA Evaluation

Transfer AT improves both transferred adversarial robustness and MIA-based training data privacy

Table 4: MIA success rate(%) on CIFAR-10 with different pre-trained models in Standard and Transferred AT Trained LM-VP models under Threat model ResNet18.

Pre-trained models	Standar	d Training	Transfered AT		
	MIA Nat	MIA Adv	MIA Nat	MIA Adv	
ResNet50	68.92	57.88	55.27	51.19	
ResNet152	75.34	56.46	62.15	50.77	
WRN-50-2	62.58	50.66	50.46	50.94	
VIT	51.66	50.37	50.53	51.78	
Swin	51.75	50.53	50.23	51.63	
ConvNext	80.14	77.33	50.32	50.70	
EVA	77.46	73.35	50.32	50.67	

Generation Gap and MIA Success Rate on Trained LM-VP Models

Conclusion

- ➢ Pre-trained models significantly influences the white-box adversarial robustness of LM-VP→hard to draw consistent conclusions
- Transfer AT achieve a good trade-off between transferred adversarial robustness and MIAbased privacy->consistent findings across various pretrained models