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1.1 Missing Data Imputation (MDI) Task

Background Introduction

① Suppose we have an ideal tabular data: 𝑿𝑿(ideal) ∈ ℝN×D.
② However, at hand, we have an observational data : 𝑿𝑿(obs) =

𝑿𝑿(ideal) ⊙𝑴𝑴 + NaN ⊙ 𝟏𝟏N×D −𝑴𝑴 .
③ Where NaN is the abbreviation of not a number, 𝑴𝑴 ∈ 0,1 N×D is 

mask matrix, and 𝟏𝟏N×D is the matrix of ones.
④ We should recover 𝑿𝑿(ideal) by imputation matrix 𝑿𝑿(imp) as follows:   

�𝑿𝑿 = 𝑿𝑿(ideal) ⊙𝑴𝑴 + 𝑿𝑿(imp) ⊙ (𝟏𝟏N×D −𝑴𝑴).
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1.2 Diffusion Model for Missing Data Imputation 

Background Introduction

① Suppose we have a score function: ∇𝑿𝑿 log 𝑝𝑝(𝑿𝑿)
② Diffusion models generate samples by simulating the SDE: d𝑿𝑿𝜏𝜏 =

𝑓𝑓 𝑿𝑿𝜏𝜏 𝑑𝑑𝑑𝑑 + 𝑔𝑔𝜏𝜏𝑑𝑑𝑊𝑊𝜏𝜏

③ Where 𝑑𝑑 is the time, 𝑓𝑓 𝑿𝑿𝜏𝜏 is drift term, which is concerned with 
score function, 𝑔𝑔𝜏𝜏 is the volatility term. The density 𝑟𝑟(𝑿𝑿𝜏𝜏) is 
governed by: 𝜕𝜕𝜕𝜕(𝑿𝑿𝜏𝜏)

𝜕𝜕𝜏𝜏
= −∇ ⋅ 𝑟𝑟 𝑿𝑿𝜏𝜏 𝑓𝑓 𝑿𝑿𝜏𝜏 + 1

2
𝑔𝑔𝜏𝜏2∇ ⋅ ∇𝑟𝑟(𝑿𝑿𝜏𝜏)

④ Diffusion-Model-based MDI treats the MDI problem as a conditional 
generative problem, which aims to generate samples from 
conditional score function: ∇𝑿𝑿(miss) log 𝑝𝑝 𝑿𝑿 miss 𝑿𝑿 obs )

⑤ In practice, ground-truth missing values are unavailable, thus, we 
should mask part of data to construct the score function:  
∇𝑿𝑿(miss) log 𝑝𝑝 𝑿𝑿 miss 𝑿𝑿 obs ).
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1.3 Wasserstein Gradient Flow

Background Introduction

① Suppose we want to optimize a cost functional: ℱcost: 𝒫𝒫2(ℝD) → ℝ
② Wasserstein Gradient Flow is an absolute continuous trajectory 

𝑞𝑞𝜏𝜏 𝜏𝜏≥0, that descend ℱcost as effective as possible.
③ The trajectory in Wasserstein Gradient Flow is governed by the 

continuity equation: 𝜕𝜕𝑞𝑞𝜏𝜏
𝜕𝜕𝜏𝜏

= −∇ ⋅ 𝑢𝑢𝜏𝜏𝑞𝑞𝜏𝜏

④ Velocity field 𝑢𝑢𝜏𝜏 is given by 𝑢𝑢𝜏𝜏 = −∇𝑋𝑋
𝛿𝛿ℱcost
𝛿𝛿𝑞𝑞𝜏𝜏

. 

⑤ Based on this, the evolution of 𝑋𝑋 ∈ ℝDcan be delineated by the 
ODE 𝑑𝑑𝑋𝑋𝜏𝜏

𝑑𝑑𝜏𝜏
= 𝑢𝑢𝜏𝜏
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2.1 The Task for MDI: An Optimization Perspective

Motivation

Based on the Maximum Likelihood Estimation principle, we can 
obtain the following optimization problem:

𝑿𝑿(imp) = argmax𝑿𝑿(miss) log �̂�𝑝 𝑿𝑿 miss 𝑿𝑿 obs ).
From the perspective of probabilistic machine learning, we can 
reframe the following cost functional:

argmax𝜕𝜕(𝑿𝑿 miss ) 𝔼𝔼𝜕𝜕(𝑿𝑿 miss ) log �̂�𝑝 𝑿𝑿 miss 𝑿𝑿 obs ) ,

where we assume that 𝑿𝑿(miss) comes from a proposal distribution 
𝑟𝑟(𝑿𝑿 miss ), optimizing the sample 𝑿𝑿(miss) is optimizing the distribution. 
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2.2 A Toy Case for DM-based Optimization

Motivation

Suppose we have a Dirichlet distribution supports on  Δ2, and we want to 
optimize the functional defined as follows:

argmax𝒂𝒂ℎ∈Δ2 �
ℎ=1

H

{log
Γ ∑𝑘𝑘=13 𝜌𝜌𝑘𝑘
∏𝑘𝑘=1
3 Γ 𝜌𝜌𝑘𝑘

+ �
𝑘𝑘=1

3

𝜌𝜌𝑘𝑘 − 1 log𝒂𝒂𝑘𝑘,ℎ} ,

where 𝒂𝒂ℎ is the variable, 𝜌𝜌𝑘𝑘|𝑘𝑘=13 = [2.5,2.5,5.0] is concentration 
parameter, and H is the sample number.
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2.2 A Toy Case for DM-based Optimization

Motivation

7

Expected Optimal Results Results by Diffusion Models

 The results tend to cluster around the expected optimal results
 There might be something implicitly optimized during DMs
 And this implicitly optimized term may result in diversity
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3.1 What makes a diversified imputation result?

Proposed Approach

8

① d𝑿𝑿𝜏𝜏 = 𝑓𝑓 𝑿𝑿𝜏𝜏 𝑑𝑑𝑑𝑑 + 𝑔𝑔𝜏𝜏𝑑𝑑𝑊𝑊𝜏𝜏 is governed by 𝜕𝜕𝜕𝜕(𝑿𝑿𝜏𝜏)
𝜕𝜕𝜏𝜏

= −∇ ⋅

𝑟𝑟 𝑿𝑿𝜏𝜏 𝑓𝑓 𝑿𝑿𝜏𝜏 + 1
2
𝑔𝑔𝜏𝜏2∇ ⋅ ∇𝑟𝑟(𝑿𝑿𝜏𝜏).

② The trajectory in Wasserstein Gradient Flow is governed by the 
continuity equation: 𝜕𝜕𝑞𝑞𝜏𝜏

𝜕𝜕𝜏𝜏
= −∇ ⋅ 𝑢𝑢𝜏𝜏𝑞𝑞𝜏𝜏

Let us analyze and improve the diffusion model-based 
MDI within the Wassersetin gradient flow framework! 
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3.1 What makes a diversified imputation result?

Proposed Approach
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For diffusion model-based MDI, we can find that they are 
optimizing the following cost functional:

argmax𝜕𝜕(𝑿𝑿 miss ) 𝔼𝔼𝜕𝜕(𝑿𝑿 miss ) log �̂�𝑝 𝑿𝑿 miss 𝑿𝑿 obs ) + 𝜓𝜓 𝑿𝑿 miss + const

 VP-SDE: 𝜓𝜓 𝑿𝑿 miss = 1
2
ℍ 𝑟𝑟 𝑿𝑿 miss + 1

4
𝔼𝔼𝜕𝜕(𝑿𝑿 miss ) 𝑿𝑿 miss ⊤

𝑿𝑿 miss ≥ 0

 VE-SDE: 𝜓𝜓 𝑿𝑿 miss = 1
2
ℍ 𝑟𝑟 𝑿𝑿 miss ≥ 0

 sub-VP-SDE: 𝜓𝜓 𝑿𝑿 miss = 1
2
ℍ 𝑟𝑟 𝑿𝑿 miss + 1

4𝛾𝛾𝜏𝜏
𝔼𝔼𝜕𝜕(𝑿𝑿 miss ) 𝑿𝑿 miss ⊤

𝑿𝑿 miss ≥ 0

 𝜓𝜓 𝑿𝑿 miss consistently greater than 0.

 Entropy term 1
2
ℍ 𝑟𝑟 𝑿𝑿 miss results in diversity.



NeurIPS 2024, Main Track, Submission ID: #1850

3.2 How to eliminate the diversity?

Proposed Approach

10

 𝜓𝜓 𝑿𝑿 miss should be smaller than 0.
 The design regularized term should eliminate diversity.
 The negative entropy is a suitable choice:

𝜓𝜓 𝑿𝑿 miss = −𝜆𝜆ℍ 𝑟𝑟 𝑿𝑿 miss , 𝜆𝜆 ≥ 0

 We can define a novel cost functional as follows:

ℱNER = 𝔼𝔼𝜕𝜕(𝑿𝑿 miss ) log �̂�𝑝 𝑿𝑿 miss 𝑿𝑿 obs ) − 𝜆𝜆ℍ 𝑟𝑟 𝑿𝑿 miss

 We call our approach termed ‘Negative Entropy-regularized 
Wasserstein Gradient Flow-based Imputation’, aka, NewImp.
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3.3 How to optimize this functional?

Proposed Approach
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 Within WGF framework, we can optimize the ℱNER with the 
help of the following velocity field:

𝑢𝑢 𝑿𝑿 miss = −∇𝑿𝑿 miss
𝛿𝛿ℱNER

𝛿𝛿𝑟𝑟 𝑿𝑿 miss

= ∇𝑿𝑿 miss log �̂�𝑝 𝑿𝑿 miss 𝑿𝑿 obs ) + 𝜆𝜆∇𝑿𝑿 miss log 𝑟𝑟 𝑿𝑿 miss

However, implementing this velocity filed to obtain imputed value 
by d𝑿𝑿

miss

d 𝜏𝜏
= 𝑢𝑢 𝑿𝑿 miss requires explicitly estimating intractable 

density function 𝑟𝑟 𝑿𝑿 miss :

 Directly estimating 𝑟𝑟 𝑿𝑿 miss is intractable.

 Analytically solving the continuity equation 𝜕𝜕𝜕𝜕(𝑿𝑿 miss )
𝜕𝜕𝜏𝜏

= −∇ ⋅
[𝑢𝑢 𝑿𝑿 miss 𝑟𝑟 𝑿𝑿 miss ] is difficult.
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3.3 How to optimize this functional?

Proposed Approach
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Fortunately, with the help of the following two conditions, we can 
realize the velocity filed in computer language:

① Velocity filed is restricted within the RKHS satisfies the 
boundary condition: 𝑢𝑢 𝑿𝑿 miss ∈ 𝐾𝐾 𝑿𝑿 miss , �𝑿𝑿 miss , and the 
kernel function satisfies: lim

‖�𝑿𝑿 miss ‖→∞
𝐾𝐾 𝑿𝑿 miss , �𝑿𝑿 miss = 0.

② Density function 𝑟𝑟(𝑿𝑿 miss ) is bounded.

We can get: 

𝑢𝑢 𝑿𝑿 miss

= 𝔼𝔼𝜕𝜕(�𝑿𝑿 miss )

−𝜆𝜆∇�𝑿𝑿 miss 𝐾𝐾 𝑿𝑿 miss , �𝑿𝑿 miss

+ ∇�𝑿𝑿 miss log �̂�𝑝 �𝑿𝑿 miss 𝑿𝑿 obs )
⊤
𝐾𝐾 𝑿𝑿 miss , �𝑿𝑿 miss
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3.4 Can we sidestep the mask modeling?

Proposed Approach

13

Interestingly, we can find another joint distribution related cost-
functional:

ℱjoint−NER = 𝔼𝔼𝜕𝜕(𝑿𝑿 joint ) log �̂�𝑝 𝑿𝑿 joint − 𝜆𝜆ℍ[𝑟𝑟 𝑿𝑿 joint ]

We can prove that:

 ℱjoint−NER = ℱNER − const

 Within Wasserstein gradient flow framework, the velocity filed 
induced by ℱjoint−NER is identity to the velocity filed induced 
by ℱNER, 𝑢𝑢 𝑿𝑿 joint satisfies: 𝑢𝑢 𝑿𝑿 joint = 𝑢𝑢(𝑿𝑿 miss ).
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3.4 Can we sidestep the mask modeling?

Proposed Approach
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By far, we merely need to simulate the velocity field:
𝑢𝑢 𝑿𝑿 joint

= 𝔼𝔼𝜕𝜕(�𝑿𝑿 joint )

−𝜆𝜆∇�𝑿𝑿 miss 𝐾𝐾 𝑿𝑿 joint , �𝑿𝑿 joint

+ ∇�𝑿𝑿 miss log �̂�𝑝(�𝑿𝑿 joint )
⊤
𝐾𝐾 𝑿𝑿 joint , �𝑿𝑿 joint

We concerning terms can be realized by:

 𝐾𝐾 𝑿𝑿 joint , �𝑿𝑿 joint = exp(−‖𝑿𝑿 joint −�𝑿𝑿 joint ‖22

2ℎ2
)

 ∇�𝑿𝑿 miss 𝐾𝐾 𝑿𝑿 joint , �𝑿𝑿 joint = ∇�𝑿𝑿 joint 𝐾𝐾 𝑿𝑿 joint , �𝑿𝑿 joint ⊙ (

)

𝟏𝟏N×D −

𝑴𝑴 + 0 × 𝑴𝑴

 ∇�𝑿𝑿 miss log �̂�𝑝(�𝑿𝑿 joint ) = ∇�𝑿𝑿 joint log �̂�𝑝(�𝑿𝑿 joint ) ⊙ 𝟏𝟏N×D −𝑴𝑴 + 0 × 𝑴𝑴

 𝔼𝔼𝜕𝜕(�𝑿𝑿 joint ) realized by Monte Carlo approximation

 Now we merely remain the implementation of ∇�𝑿𝑿 joint log �̂�𝑝(�𝑿𝑿 joint ).
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3.4 Estimation of Joint Distribution

Proposed Approach

16

Up to now, our primary task is to estimate the joint distribution 
∇𝑿𝑿 joint log �̂�𝑝(𝑿𝑿 joint ).

 We parameterize the score function ∇𝑿𝑿 joint log �̂�𝑝(𝑿𝑿 joint ) by a 
neural network.

 The neural network is trained by denoise score matching (DSM) 
by the following loss function:

ℒDSM
=

1
2𝔼𝔼𝑞𝑞𝜎𝜎 �𝑿𝑿 joint 𝑿𝑿 joint )[‖∇�𝑿𝑿 joint log �̂�𝑝 �𝑿𝑿 joint − ∇�𝑿𝑿 joint log𝑞𝑞𝜎𝜎 �𝑿𝑿 joint 𝑿𝑿 joint ) ‖2]

 where �𝑿𝑿 joint = 𝑿𝑿 joint + 𝜖𝜖, 𝜖𝜖~𝒩𝒩(0,𝜎𝜎2𝐼𝐼)
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3.5 Overall Framework

Proposed Approach

16

Velocity 𝑢𝑢 𝑿𝑿 joint
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Imputed Matrix

DSM for log𝑝𝑝(𝑿𝑿 joint )

Imputation

Estimation
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4.1 Toy Case Study Results

Experimental Results

17

 NewImp approach outperforms 
on different types of data.

 This phenomenon reflects that 
the NewImp approach is robust 
to data type like heavy-tailed, 
skewed, and multi-modal.
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4.2 Baseline Comparison

Experimental Results

18

 NewImp approach outperforms most of prevalent models. 
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4.3 Ablation Study

Experimental Results

19

 Both of the negative regularization term and joint modeling 
strategy are effective for model performance improvement. 
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Thank you for listening！
All suggestions are welcomed. ！
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