

Over-parameterized Student Model via Tensor Decomposition Boosted Knowledge Distillation

Yu-Liang Zhan¹, Zhong-Yi Lu², Hao Sun^{1*}, Ze-Feng Gao^{2*}

¹ Gaoling School of Artificial Intelligence, Renmin University of China

² School of Physics, Renmin University of China

Background&Motivation

• The limitations of Large-scale pre-trained model

• The substantial storage demands and high computational complexity hinder the practical deployment of Largescale pre-trained models in real-world applications.

• Limited capacity of small student models

• Due to the lesser over-parameterization of small models compared to large ones, small student models' generalization capability often falls short, resulting in suboptimal fine-tuning performance on downstream tasks.

• Major concerns of over-parameterizing student models

- The potential information loss caused by tensor decomposition should be minimized, as small computation errors may accumulate and propagate exponentially within the stacked layers of student models.
- There is no effective mechanism to ensure the consistency of information between student and teacher models in the over-parameterized student models.

> Method

• Augmentation in parameter count :

$$N_{add} = \sum_{k=1}^{m} i_k j_k d_{k-1} d_k - \prod_{k=1}^{m} i_k j_k$$

• Aligning the auxiliary tensors:

$$\mathcal{L}_{Aux} = rac{1}{n} \sum_{k=1}^n extsf{MSE} \left(\mathcal{A}_{s,k}, \mathcal{A}_{t,k}
ight)$$

Experiments

• NLP Tasks

Datasets	RTE Acc.	MRPC F1/Acc.	STS-B Corr.	CoLA Mcc.	SST-2 F1/Acc.	QNLI Acc.	QQP F1/Acc.	MNLI Acc.	Avg.	# Train Params (M)	# Inference Params (M)
BERT-base [2]	70.5	86.5/81.8	86.6	54.2	92.0	91.2	88.0/91.0	84.2	83.4	110	110
BERT-of-Theseus [49]											
None	65.5	85.3/79.6	86.2	39.2*	90.4	88.7	86.1/89.6	81.5	79.2	66	66
+SVD	65.5	85.4/80.0	86.5	43.1	90.6	88.6	86.2/89.7	80.3	79.6	90	66
+OPDF (Ours)	66.2	85.9/80.5	88.6	45.2	91.3	89.0	86.8/90.2	81.4	80.5	160	66
LGTM [42]											
None	63.3	86.3/80.1	82.9*	33.9*	91.1	89.3	88.0/91.1	82.2	78.8	67	67
+SVD	64.7	86.8/81.9	83.1	37.4	91.2	88.6	86.5/89.4	79.3	78.9	91	67
+OPDF (Ours)	66.9	87.8/82.4	83.3	38.9	91.5	88.7	87.0/90.2	80.9	79.8	163	67
DBKD [43]											
None	61.2	83.3/75.5	1	25.2	88.1	86.1	85.3/88.7	76.1	74.4	53	53
+SVD	64.7	86.5/78.6	/	26.4	88.8	85.8	85.5/89.0	76.5	75.8	69	53
+OPDF (Ours)	69.1	88.4/83.3	/	27.2	89.8	86.5	86.9/90.2	77.7	77.6	83	53
AD-KD [44]											
None	68.8	88.7/84.3	89.3	53.1	91.5	90.8	85.9/89.5	81.7	82.4	67	67
+SVD	69.4	89.3/85.8	88.8	53.5	89.9	90.1	86.4/89.8	81.5	82.6	91	67
+OPDF (Ours)	71.7	90.3/86.8	88.9	55.0	91.3	91.1	86.8/90.0	82.1	83.4	182	67

• Further Analysis

• CV Tasks

Datasets	Imagenet-1k		Imagenet Real		Imagenet V2		# Train Params	# Inference Params			
Datasets	top-1	top-5	top-1	top-5	top-1	top-5	(M)	(M)			
CLIP-ViT-L/14[59]	84.8*	/	88.9*	/	75.1*	/	321	321			
TinyVit-5M[58]											
None	77.4*	94.1*	86.1*	97.5*	66.8*	87.6*	5.4	5.4			
+SVD	77.9	95.1	86.3	97.3	68.7	88.4	7.6	5.4			
+OPDF	80.0	96.7	87.4	98.1	69.4	88.9	9.9	5.4			
TinyVit-11M											
None	80.5*	95.6*	87.8*	98.0*	70.7*	90.4*	11	11			
+SVD	82.0	96.7	88.4	97.9	71.7	91.4	17	11			
+OPDF	82.5	96.9	88.9	98.3	72.4	92.6	23	11			
TinyVit-21M											
None	82.3*	96.3*	88.9*	98.3*	73.0*	91.9*	21	21			
+SVD	82.9	96.8	88.3	97.8	71.8	92.4	29	21			
+OPDF	84.0	97.5	89.4	98.4	74.9	93.4	38	21			

• OPDF can enhance the performance of the distillation model without increasing the inference latency .

- There are inherent limits to the benefits that can be achieved through over-parameterization in knowledge distillation models.
- The performance of the model with OPDF consistently remains at least as high as that of the original method.
- Learning rate decrease as the over-parameterization scale increases.

All components in our approach are effective.

Over-parameterized Student Model via Tensor Decomposition Boosted Knowledge Distillation

Thank You!

For further details, feel free to get in touch with us. zhanyuliang@ruc.edu.cn

