

Higher-Rank Irreducible Cartesian Tensors for Equivariant Message Passing

<u>Viktor Zaverkin^{1,*}</u>, Francesco Alesiani^{1,†}, Takashi Maruyama^{1,†}, Federico Errica², Henrik Christiansen¹, Makoto Takamoto¹, Nicolas Weber¹, and Mathias Niepert^{1,3}

¹NEC Laboratories Europe ²NEC Italy ³University of Stuttgart

38th Conference on Neural Information Processing Systems (NeurIPS 2024)

Machine-Learned Interatomic Potentials

• Learn a function which approximates the potential energy *E* of an atomic system $S = {\mathbf{r}_u, Z_u}_{u=1}^{N_{at}}$:

 $f(S, \theta): S \mapsto E \in \mathbb{R}$

Learn θ from training data (energy, atomic forces, and stress tensor) at reference level (DFT, CC, ...).

▶ Consider (semi-)local interactions within *r*_{max}:

$$E\left(S,\theta\right) = \sum_{i=u}^{N_{\mathrm{at}}} \underbrace{E_{u}\left(\tilde{S}_{u},\theta\right)}_{=f\left(\tilde{S}_{u},\theta\right)}$$

Transform S̃_u = {r_u, Z_u, {r_v, Z_v}_{v∈rmax}} to incorporate symmetries and many-body terms → message passing.

Many-Body Equivariant Message Passing

- Spherical tensors are conventionally used in equivariant message-passing architectures.
- Their products require complicated numerical coefficients and can be computationally demanding.
- State-of-the-art Cartesian models offer a promising alternative but
 - rely exclusively on convolutions with invariant filters and
 - restrict the construction of many-body features,
 - limiting the range of possible architectures and their expressive power.
- We address these limitations by exploring irreducible Cartesian tensors and their irreducible products.

Many-Body Equivariant Message Passing

Clebsch–Gordan tensor product:

$$\left(Y_{m_1}^{l_1}\otimes Y_{m_2}^{l_2}\right)_{m_3}^{l_3} = \sum_{m_1=-l_1}^{l_1}\sum_{m_2=-l_2}^{l_2} C_{l_1m_1,l_2m_2}^{l_3m_3}Y_{m_1}^{l_1}Y_{m_2}^{l_2},$$

Convolutions and two-body features:

$$\mathbf{A}_{ukl_{3}}^{(t)} = \sum_{v \in r_{\max}} \underbrace{\left(R_{kl_{1}l_{2}l_{3}}^{(t)}(r_{uv}) \mathbf{Y}_{l_{1}}(\hat{\mathbf{r}}_{uv}) \right)}_{= \text{radial distances} \times \text{unit vectors}} \otimes \underbrace{\left(\sum_{k'} W_{kk'l_{2}}^{(t)} \mathbf{h}_{vk'l_{2}}^{(t)} \right)}_{= \text{node embeddings}}$$

Many-body features:

$$\mathbf{B}_{u\eta_{\nu}kL}^{(t)} = \underbrace{\left(\mathbf{A}_{ukl_{1}}^{(t)} \otimes \cdots \otimes \mathbf{A}_{ukl_{\nu}}^{(t)}\right)}_{\nu\text{-fold}}$$

Many-Body Equivariant Message Passing

Clebsch–Gordan tensor product:

$$\left(Y_{m_1}^{l_1}\otimes Y_{m_2}^{l_2}\right)_{m_3}^{l_3} = \sum_{m_1=-l_1}^{l_1}\sum_{m_2=-l_2}^{l_2} C_{l_1m_1,l_2m_2}^{l_3m_3}Y_{m_1}^{l_1}Y_{m_2}^{l_2},$$

Convolutions and two-body features:

Irreducible Cartesian Tensors

• Embedding unit vectors $(\mathbf{Y}_{l}(\hat{\mathbf{r}}) \rightarrow \mathbf{T}_{l}(\hat{\mathbf{r}}))$:

$$\mathbf{T}_{l}(\hat{\mathbf{r}}) = C \sum_{m=0}^{\lfloor l/2 \rfloor} (-1)^{m} \frac{(2l-2m-1)!!}{(2l-1)!!} \Big\{ \hat{\mathbf{r}}^{\otimes (l-2m)} \otimes \mathbf{I}^{\otimes m} \Big\}$$

▶ Irreducible Cartesian tensor product (even, i.e., $l_1 + l_2 - l_3 = 2k$):

$$(\mathbf{T}_{l_1} \otimes \mathbf{T}_{l_2})_{l_3} = C_{l_1 l_2 l_3} \sum_{m=0}^{\min(l_1, l_2) - k} (-1)^m 2^m \frac{(2l_3 - 2m - 1)!!}{(2l_3 - 1)!!} \{ (\mathbf{T}_{l_1} \cdot (k + m) \cdot \mathbf{T}_{l_2}) \otimes \mathbf{I}^{\otimes m} \}$$

Propositions 4.1 & 4.2: The resulting message-passing layers are equivariant to actions of the orthogonal group and preserve the traceless property.

Irreducible Cartesian Tensors

 Embedding unit vectors & irreducible Cartesian tensor products:

Propositions 4.1 & 4.2: The resulting message-passing layers are equivariant to actions of the orthogonal group and preserve the traceless property.

Scaling and Computational Cost

The required number of calculations:

- Spherical tensors: (2L + 1)⁵ for two-body features and L^{1/2}^{\u03cd}(\u03c0\u03c0+3) (or \u03c0L⁵(\u03c0-1)) for many-body features.
- Cartesian tensors: $9^{L}L!/(2^{L/2}(L/2)!)$ for two-body features and $\mathcal{K}(9^{L}L!/(2^{L/2}(L/2)!))^{\nu-1}$ for many-body features.

Evaluation on Benchmark Data Sets

- Evaluation on rMD17, MD22, 3BPA, AcAc, and Ta-V-Cr-W data sets.
- Competitive results BUT modifications to architectures are necessary!
- ▶ Energy (E, meV) and force (F, meV/Å) RMSEs for the 3BPA data set:

		ICTP _{full}	ICTP _{sym}	$ICTP_{sym+lt}$	MACE	CACE	MACE	NequIP
300 K	E F	$\begin{array}{c} \textbf{2.70} \pm \textbf{0.22} \\ \textbf{9.45} \pm \textbf{0.29} \end{array}$	$\begin{array}{r} \textbf{2.70} \pm \textbf{0.08} \\ \textbf{9.39} \pm \textbf{0.31} \end{array}$	$\begin{array}{c} \textbf{2.98} \pm \textbf{0.34} \\ \textbf{9.57} \pm \textbf{0.20} \end{array}$	$\begin{array}{c}\textbf{2.81}\pm\textbf{0.18}\\\textbf{9.47}\pm\textbf{0.42}\end{array}$	6.3 21.4	$\begin{array}{c}\textbf{3.0}\pm\textbf{0.2}\\\textbf{8.8}\pm\textbf{0.3}\end{array}$	$\begin{array}{c} 3.28\pm0.10\\ 10.77\pm0.19\end{array}$
600 K	E F	$\begin{array}{r} \textbf{10.74} \pm \textbf{0.31} \\ \textbf{22.99} \pm \textbf{0.64} \end{array}$	$\begin{array}{c} \textbf{10.38} \pm \textbf{0.80} \\ \textbf{22.87} \pm \textbf{0.91} \end{array}$	$\begin{array}{c} 10.29\pm0.90\\ 23.03\pm0.76\end{array}$	$\begin{array}{c} 11.11 \pm 1.41 \\ \textbf{23.27} \pm \textbf{1.45} \end{array}$	18.0 45.2	$\begin{array}{c}\textbf{9.7}\pm\textbf{0.5}\\\textbf{21.8}\pm\textbf{0.6}\end{array}$	$\begin{array}{c} 11.16\pm0.14\\ 26.37\pm0.09\end{array}$
1200 K	E F	$\begin{array}{c} \textbf{29.80} \pm \textbf{0.92} \\ \textbf{62.82} \pm \textbf{1.23} \end{array}$	$\begin{array}{r} \textbf{30.84} \pm \textbf{1.87} \\ \textbf{64.54} \pm \textbf{3.88} \end{array}$	$\begin{array}{r} \textbf{31.32} \pm \textbf{1.80} \\ \textbf{65.36} \pm \textbf{3.47} \end{array}$	$\begin{array}{c} \textbf{31.15} \pm \textbf{1.58} \\ \textbf{65.22} \pm \textbf{3.52} \end{array}$	58.0 113.8	$\begin{array}{c} \textbf{29.8} \pm \textbf{1.0} \\ \textbf{62.0} \pm \textbf{0.7} \end{array}$	$\begin{array}{c} 38.52\pm1.63\\ 76.18\pm1.11\end{array}$
Dihedral slices	E F	$\begin{array}{r} 9.82 \pm 0.79 \\ 17.52 \pm 0.54 \end{array}$	$\begin{array}{c} 10.64 \pm 1.07 \\ \textbf{17.18} \pm \textbf{0.81} \end{array}$	$\begin{array}{c} 13.03\pm3.44\\ 19.31\pm0.83\end{array}$	$\begin{array}{c} \textbf{8.56} \pm \textbf{1.53} \\ \textbf{17.69} \pm \textbf{1.29} \end{array}$	_	$\begin{array}{c} \textbf{7.8} \pm \textbf{0.6} \\ \textbf{16.5} \pm \textbf{1.7} \end{array}$	23.2 23.1
Time/structure [ms]		6.45 ± 0.50	5.31 ± 0.02	$\textbf{3.51}\pm\textbf{0.22}$	4.66 ± 0.05	-	24.3	103.5
Memory/batch [GB]		49.66 ± 0.00	42.01 ± 0.11	39.08 ± 0.00	$\textbf{36.26} \pm \textbf{0.00}$	-	-	-

Orchestrating a brighter world

