Exploiting Descriptive Completeness Prior for Cross Modal Hashing with Incomplete Labels

Haoyang Luo¹, Zheng Zhang¹, Yadan Luo² ¹Harbin Institute of Technology, Shenzhen ²University of Queensland

NeurIPS 2024 poster paper

Motivation

Cross-modal hashing (CMH) addresses the highly demanding cross-modal similarity search in both web search systems and academic domains.

• However, due to limited labour resources, fully supervised annotation becomes impractical for large-scale datasets. **Partial annotation** with unknown labels is a feasible solution for Multi-label learning systems.

CMH with partial labels inevitably encounters disrupted similarity learning.

- Jointly missing labels across samples can produce:
	- \triangleright Reduced positive pairs.
	- \triangleright Unclear relationship between negative pairs.
- Existing CMHs require clear supervision from pairwise similarity

Motivation

Some feasible solution leveraging prior knowledge in **vision-language models** (e.g., CLIP) has been established for the partial multi-label recognition task.

However, CLIP label recovery for deep CMH remains under-explored because the original CLIP prompt yields an unsatisfactory 68% recovery precision.

We seek to overcome the deficiencies of the original CLIP and consider the CLIP prior knowledge of **descriptive completeness**.

Contribution

- We propose a PCRIL framework, which jointly performs **semantic recovery** and **pairwise uncertainty elimination** for efficient cross-modal hashing with incomplete labels.
- A novel recovery architecture is proposed to recover the neglected semantic labels and pairwise similarities in the following figure.
- Extensive experiments verify that our PCRIL can consistently outperform state-of-the-art CMH methods across a range of incompleteness levels and different benchmarks.

Method - **Prompt Contrastive Recovery**

1. Contrastive Label Sets Construction.

For a sample *i*'s positive labels

 $K_p^i = \{c \mid l_i^c = 1\},\$

random subset $K_a^i \subset K_p^i$ is selected as the **anchor set**.

3 types of **negative variants** are constructed:

- deleting: $K_d^{i,s} = K_a^i \{s\}$
- joining: $K_j^{i,t} = K_a^i \cup \{t\}$
- replacing: $K_r^{i,s,t} = K_a^i \{s\} \cup \{t\}$ $s \in K_q^i$ $t \in K_n^i$

(a) The motivation of selecting positive anchor sets to enrich sample-label pairs.

Method - **Prompt Contrastive Recovery**

Unknown

Label Set

2. Prompt Contrastive Learning.

We define a **learnable prompt** template for multi-class sets as

 $\boldsymbol{P}(K_a^i) = (\boldsymbol{p}_{head}, \sigma(\{\boldsymbol{p}^c\}_{c \in K_a^i}), \boldsymbol{p}_{tail})$

where $p^c = (u_1^c, u_2^c, ..., u_m^c, \text{CLS}^c, v_1^c, v_2^c, ..., v_m^c)$

contains learnable parameters.

(b) The relationship of the anchor and negative subsets.

(c) The potential label tree search with contrastively learned label embeddings.

A CLIP matching score is defined as

 $\Phi^{i}(K) = E_{t}(P(K))^{\top}h_{i}/\tau$

with the following **contrastive margin loss** between the anchor set and the 3 negative variants to learn completeness measurement:

$$
\mathcal{L}^{i}(K_{a}, K_{*}) = max(\Phi^{i}(K_{*}) - \Phi^{i}(K_{a}) + m, 0)
$$

$$
\mathcal{L}^{ctr} = \sum_{i=1}^{N} \sum_{K_{a}^{i} \subset K_{p}^{i}} (\sum_{s \in K_{a}^{i}} \mathcal{L}^{i}(K_{a}^{i}, K_{d}^{i,s}) + \sum_{t \in K_{n}^{i}} \mathcal{L}^{i}(K_{a}^{i}, K_{j}^{i,t}) + \sum_{s,t} \mathcal{L}^{i}(K_{a}^{i}, K_{r}^{i,s,t})
$$

Method - **Prompt Contrastive Recovery**

3. Potential Label Tree Search (PLTS).

After prompt contrastive learning, a tree-search process is defined as

$$
c_u^* = \underset{c_u \in K_u^i(\omega)}{\arg \max} \Phi^i(K_p^i(\omega) \cup \{c_u\})
$$

to search for a positive class in each step, with termination condition

 $\Phi^{i}(K_{p}^{i}(\omega^{*}) \cup \{c_{u}^{*}\}) < \Phi^{i}(K_{p}^{i}(\omega^{*})) + \frac{m}{2}$

We can further recover the remaining sample labels by specifying pseudo-labels:

where

Method - **Augmentation Strategies**

1. Complementary Semantic Augmentation.

We mix up **complementary** samples to further eliminate uncertainty in labels.

Samples carrying the same labels of respectively unknown and positive values are considered complementary.

U \mathbf{U} \cup \mathbf{U} u U U U \mathbf{U} \mathbf{U} S' 0 $1 \mid 1$ U 1 1 U $|0|0|1|1$ 1 U θ U 1 1 U $1 \cup 1$ 1 0 0 0 $|U|$ 1 | 1 Pairwise Similarity Supervision

2. Adaptive Negative Masking.

For pairwise supervision, we randomly flip a small proportion of unknown values (U) in similarity matrix as negative (0).

This prevents the false negative pairs from dominating the pairwise similarity learning.

1. Cross-modal Hashing with Incomplete Labels.

Our method significantly remedies the current CMH methods for learning with incomplete labels.

2. Ablation Study.

Each contribution has stably improved the performance:

- ANM significantly outperforms traditional settings such as Assume Negative (AN), verifying our balanced similarity supervision.
- PCR and CSA modules perform reliable label recovery and improve performance through all datasets and settings.

3. Prompt construction and recovery.

• Our prompt construction outperforms the conventional single-label prompts and the pure textual prompts.

• The tree-search label recovery sheme PLTS generally produces the best results compared to one-step labeling and single-modal conditioning strategies.

Table 4: Prompt construction variants compared on Flickr dataset. The MAP and precisions of recovered positive labels (PRECISION) are reported. Our PCRIL can successfully marry multi-label information with CLIP prior knowledge (compared to Conventional) and yield learned prompts for instance-label matching (compared to Phrasal).

Table 5: Prompt search variants compared on Flickr and NUS datasets. Compared to single-modal recovery, our proposed PLTS can perform instance-level matching to produce more precise results. The one-step all variant validates the effectiveness of our recursive label recovery in PLTS.

- **4. Other quantitative & qualitative results** also verifies the effectiveness of our method from various aspects.
- a) Label recovery through epoch. b) Pairwise supervision recovery. c) Feature space: baseline vs. recovered.

b) d) PLTS visualization.

e) Heatmap for CLIP recovery model.

 ϕ and the equation of ϕ and ϕ an

Conclusion

- We propose a PCRIL framework, which jointly performs semantic recovery and pairwise uncertainty elimination for efficient cross-modal hashing with incomplete labels.
- To the best of our knowledge, this is the first CMH method to enable prompt learning with incomplete labels..
- Extensive experiments on widely used benchmarks validated that PCRIL can significantly outperform state-of-the-art CMH methods with different partial levels.