

Persistent Test-time Adaptation in Recurring Testing Scenarios

Trung-Hieu Hoang ¹, Duc Minh Vo ², Minh N. Do ^{1,3}

¹ Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Champaign, USA

²The University of Tokyo, Japan

³ VinUni-Illinois Smart Health Center, VinUniversity

Best paper award – Community Track, 1st Workshop on Test-Time Adaptation: Model, Adapt Thyself! (MAT), Conference on Computer Vision and Pattern Recognition (CVPR) Workshop 2024.

Context: Motivation for Test-time Adaptation (TTA)

Let's look at a real-world scenario: deploying a machine learning (ML) model for traffic

surveillance camera system

Deploying

Training dataset

model's performance at test-time

How can we fix it?

- Making the ML model learnable at test time
- Utilizing unlabeled data at test time for adaptation
- TTA has been showing many "good" results!

Unforeseen circumstances can introduce domain-shift and severely reduce ML

Background: Test-time Adaptation for ML Model Deployment

Test-time Adaptation (TTA): TTA operates on an ML classifier $f_t: \mathcal{X} \to \mathcal{Y}$, parameterized by $\theta_t \in \Theta$ gradually changing over time.

Online testing stream: The model explores an online stream of testing data $X_t \sim \mathcal{P}_t$ for adapting itself $f_{t-1} \to f_t$ (self-supervised learning) before predicting $\hat{Y}_t = f_t(X_t)$.

What could go wrong?

Does the model performance/adaptability persist after a long time adapting to multiple environments?

Unfortunately, can not be guaranteed ... we call it "TTA model collapsing"

Benchmark: Recurring Test-time Adaptation

Recurring TTA on CIFAR-10-C (corrupted)

- Testing error of RoTTA [Yuan, 2023], a baseline TTA algorithm raises - performance degradation
- Quickly exceeding the error of the source model (without TTA, accepting domain shift as-it-is)
- PeTTA (ours) demonstrates its stability

Overview: Persistent Test-time Adaptation (PeTTA)

Theoretical Analysis: ε -Gaussian Mixture Model Classifier (ε -GMMC)

Goal: Simulating a simple yet representative failure case of TTA for theoretical analysis

Theoretical ε -Gaussian Mixture Model Classifier (ε -GMMC)

- Data stream: $\mathcal{X} \times \mathcal{Y} = \mathbb{R} \times \{0,1\}$ and the underlying joint distribution $P_t(x,y) = p_{y,t} \mathcal{N} \left(x; \mu_y, \sigma_y^2\right)$ with $p_{y,t} = \Pr(Y_t = y)$ true label and $\hat{p}_{y,t} = \Pr(\hat{Y}_t = y)$ predicted label
- Task: predicting X_t was sampled from cluster 0 or 1 (negative or positive)
- Procedure: pseudo-label \hat{Y}_t prediction and a mean-teacher update

A formal definition of model collapse:

Definition 1 (Model Collapse). A model is said to be collapsed from step $\tau \in \mathcal{T}, \tau < \infty$ if there exists a non-empty subset of categories $\tilde{\mathcal{Y}} \subset \mathcal{Y}$ such that $\Pr\{Y_t \in \tilde{\mathcal{Y}}\} > 0$ but the marginal $\Pr\{\hat{Y}_t \in \tilde{\mathcal{Y}}\}$ converges to zero in probability:

$$\lim_{t \to \tau} \Pr{\{\hat{Y}_t \in \tilde{\mathcal{Y}}\}} = 0.$$

- "Noisy" pseudo-label predictor: The predictor is perturbed for retaining a false negative rate (FNR) of $\varepsilon_t = \Pr\{Y_t = 1 | \hat{Y}_t = 0 \}$ to simulate undesirable effects of the TTA testing stream
- How this simple TTA model will be collapsed?

Key Analysis Results

We then obtained the following theoretical results:

Why collapsing?

Increasing the false-negative rate leads to model collapse

Lemma 1 (**Increasing FNR**). Under Assumption 1, a binary ϵ -GMMC would collapsed (Def. 1) with $\lim_{t\to\tau}\hat{p}_{1,t}=0$ (or $\lim_{t\to\tau}\hat{p}_{0,t}=1$, equivalently) if and only if $\lim_{t\to\tau}\epsilon_t=p_1$.

After collapsing?

Converging to a *single-cluster* model (instead of 2)

Lemma 2 (ϵ -GMMC After Collapsing). For a binary ϵ -GMMC model, with Assumption 1, if $\lim_{t\to\tau}\hat{p}_{1,t}=0$ (collapsing), the cluster 0 in GMMC converges in distribution to a single-cluster GMMC with parameters:

$$\mathcal{N}(\hat{\mu}_{0,t}, \hat{\sigma}_{0,t}^2) \xrightarrow{d} \mathcal{N}(p_0 \mu_0 + p_1 \mu_1,$$

$$p_0 \sigma_0^2 + p_1 \sigma_1^2 + p_0 p_1 (\mu_0 - \mu_1)^2).$$

How? Conditions and factors that contribute to the model collapse

Theorem 1 (Convergence of ϵ -GMMC). For a binary ϵ -GMMC model, with Assumption 1, let the distance from $\hat{\mu}_{0,t}$ toward μ_1 is $d_t^{0\to 1} = |\mathbb{E}_{P_t} [\hat{\mu}_{0,t}] - \mu_1|$, then:

$$d_t^{0\to 1} - d_{t-1}^{0\to 1} \le \alpha \cdot p_0 \cdot \left(|\mu_0 - \mu_1| - \frac{d_{t-1}^{0\to 1}}{1 - \epsilon_t} \right).$$

Corollary 1 (A Condition for ϵ -GMMC Collapse). With fixed p_0 , α , μ_0 , μ_1 , ϵ -GMMC is collapsed if there exists a sequence of $\{\epsilon_t\}_{\tau-\Delta_{\tau}}^{\tau}$ ($\tau \geq \Delta_{\tau} > 0$) such that:

$$p_1 \ge \epsilon_t > 1 - \frac{d_{t-1}^{0 \to 1}}{|\mu_0 - \mu_1|}, \quad t \in [\tau - \Delta_\tau, \tau].$$

Factors contributing to the model collapse:

- (i) Data-dependent factors: the prior data distribution (p_0) , the nature difference between two categories $(|\mu_0 \mu_1|)$;
- (ii) Algorithm-dependent factors: update rate (α), the false negative rate at each step (ε_t)

Under the static data stream assumption

Assumption 1 (Static Data Stream). The marginal distribution of the true label follows the same Bernoulli distribution $Ber(p_0)$: $p_{0,t} = p_0$, $(p_{1,t} = p_1 = 1 - p_0)$, $\forall t \in \mathcal{T}$.

Simulation Results: Collapsing Behavior of ε -GMMC

¹ Each column on these plots shows the histogram of model prediction (class labels are color-coded). CIFAR-10-C has an equal number of images for 10 classes. Hence, predictions from an ideal model should follow a uniform distribution.

Proposed Approach: Persisting Test-time Adaptation (PeTTA)

- Notation: With ϕ_{θ_t} is the deep-feature extractor of f_t , let $z = \phi_{\theta_t}(x)$. Keeping track of a collection of the running mean of feature vector \mathbf{z} : $\{\hat{\mu}_t^{\mathcal{Y}}\}_{v \in \mathcal{U}}$ in which $\widehat{\boldsymbol{\mu}}_t^{\mathcal{Y}}$ is exponential moving average updated with the value of vector z if $f_t(x) = y$
- **Key Idea:** Sensing the divergence of ϕ_{θ_t} from ϕ_{θ_0} , and adjust the adaptation objective correspondingly
- With μ_0^t , Σ_0^t are pre-computed on the source dataset, we can:

(1) Sensing the divergence from θ_0

$$\gamma_t^y = 1 - \exp\left(-(\hat{\boldsymbol{\mu}}_t^y - \boldsymbol{\mu}_0^y)^T (\boldsymbol{\Sigma}_0^y)^{-1} (\hat{\boldsymbol{\mu}}_t^y - \boldsymbol{\mu}_0^y)\right)$$

(2) Adaptive Learning Rate and Regularization

$$\bar{\gamma}_t = \frac{1}{|\hat{\mathcal{Y}}_t|} \sum_{y \in \hat{\mathcal{Y}}_t} \gamma_t^y, \quad \hat{\mathcal{Y}}_t = \left\{ \hat{Y}_t^{(i)} | i = 1, \dots, N_t \right\}$$

$$\lambda_t = \bar{\gamma}_t \cdot \lambda_0, \qquad \alpha_t = (1 - \bar{\gamma}_t) \cdot \alpha_0,$$

PeTTA

$$\theta'_{t} = \underset{\theta' \in \Theta}{\text{Optim }} \mathbb{E}_{P_{t}} \left[\mathcal{L}_{\text{CLS}} \left(\hat{Y}_{t}, X_{t}; \theta' \right) + \mathcal{L}_{\text{AL}} \left(X_{t}; \theta' \right) \right] + \lambda_{t} \mathcal{R}(\theta')$$

$$\theta_{t} = (1 - \alpha_{t}) \theta_{t-1} + \alpha_{t} \theta'_{t}.$$

(3) Anchor Loss

$$\mathcal{L}_{\mathrm{AL}}(X_t; \theta) = -\sum_{y \in \mathcal{Y}} \Pr(y|X_t; \theta_0) \log \Pr(y|X_t; \theta)$$

Adaptation loss (1 performance)

Regularization (1 collapse prevention)

Qualitative Results of PeTTA on CIFAR10-C

We qualitatively compare the performance of PeTTA (Persistent Test-time Adaptation) and RoTTA (Robust Test-time Adaptation [Yuan, 2023]) and analyze the model collapse on CIFAR10-C dataset

¹ Each column on these plots shows the histogram of model prediction (class labels are color-coded). CIFAR-10-C has an equal number of images for 10 classes. Hence, predictions from an ideal model should follow a uniform distribution.

Quantitative Results of PeTTA & Ablati

0 0.01 0.06 0 0.03 0 0.41 0.03 8 0.04 0.02 0.02 0.02 0.01 0 0.12 0 0.03 0 0.18 0.32 9 0.01 0.05 0.02 0.03 0.01 0

We evaluate our PeTTA and five other comparable TTA methods in recurring TTA setting on ImageNet-C dataset

	Recurring TTA visit ———————————————————————————————————																				
Method	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Avg
Source										82	2.0										82.0
LAME (Boudiaf et al., 2022)										80).9										80.9
CoTTA (Wang et al., 2022)	98.6	99.1	99.4	99.4	99.5	99.5	99.5	99.5	99.6	99.7	99.6	99.6	99.6	99.6	99.6	99.6	99.6	99.6	99.7	99.7	99.5
EATA (Niu et al., 2022)	60.4	59.3	65.4	72.6	79.1	84.2	88.7	92.7	95.2	96.9	97.7	98.1	98.4	98.6	98.7	98.8	98.8	98.9	98.9	99.0	89.0
RMT (Döbler et al., 2022)	72.3	71.0	69.9	69.1	68.8	68.5	68.4	68.3	70.0	70.2	70.1	70.2	72.8	76.8	75.6	75.1	75.1	75.2	74.8	74.7	71.8
MECTA (Hong et al., 2023)	77.2	82.8	86.1	87.9	88.9	89.4	89.8	89.9	90.0	90.4	90.6	90.7	90.7	90.8	90.8	90.9	90.8	90.8	90.7	90.8	89.0
RoTTA (Yuan et al., 2023)	68.3	62.1	61.8	64.5	68.4	75.4	82.7	95.1	95.8	96.6	97.1	97.9	98.3	98.7	99.0	99.1	99.3	99.4	99.5	99.6	87.9
RDumb (Press et al., 2023)	72.2	73.0	73.2	72.8	72.2	72.8	73.3	72.7	71.9	73.0	73.2	73.1	72.0	72.7	73.3	73.1	72.1	72.6	73.3	73.1	72.8
ROID (Marsden et al., 2024)	62.7	62.3	62.3	62.3	62.5	62.3	62.4	62.4	62.3	62.6	62.5	62.3	62.5	62.4	62.5	62.4	62.4	62.5	62.4	62.5	62.4
TRIBE (Su et al., 2024)	63.6	64.0	64.9	67.8	69.6	71.7	73.5	75.5	77.4	79.8	85.0	96.5	99.4	99.8	99.9	99.8	99.8	99.9	99.9	99.9	84.4
PeTTA (ours) ^(*)	65.3	61.7	59.8	59.1	59.4	59.6	59.8	59.3	59.4	60.0	60.3	61.0	60.7	60.4	60.6	60.7	60.8	60.7	60.4	60.2	60.5

PeTTA achieves the lowest average error

Ablation Studies:

PeTTA shows a persisting performance across 20 recurring TTA visits

Metho	d	CIFAR-10-C	CIFAR-100-C	DomainNet		
Regularizer	Fisher	CITAR-10-C	CITAR-100-C	Domaini		
L2	X	23.0	35.6	43.1		
	✓	22.7	36.0	43.9		
Cosine	X	23.0	35.2	42.5		
	✓	22.6	35.9	43.3		

CIFAR-100-C **DomainNet** Method CIFAR-10-C Baseline w/o $\mathcal{R}(\theta)$ 42.6 77.9 63.0 $\mathcal{R}(\theta)$ fixed $\lambda = 0.1\lambda_0$ 43.3 65.0 80.0 $\mathcal{R}(\theta)$ fixed $\lambda = \lambda_0$ 42.0 64.6 66.6 PeTTA - λ_t 27.1 55.0 59.7 PeTTA - λ_t + α_t 23.9 41.4 44.5 PeTTA - λ_t + $\mathcal{L}_{\mathrm{AL}}$ 26.2 36.3 43.2 $\overline{\text{PeTTA}}$ - λ_t + α_t + \mathcal{L}_{AL} 23.0 35.2 42.5

PeTTA favors various choices of regularizer $\mathcal{R}(\theta)$

Without using/ fixed

regularization coefficients does not address the performance degradation

To maintain persistence, utilizing all components is suggested in PeTTA

Conclusions: Persistent Test-time Adaptation (PeTTA)

Introducing a new testing scenario – *recurring TTA* for demonstrating the performance degradation of existing continual TTA methods

Conducting theoretical analysis on performance degradation of TTA on ϵ -GMMC, indicating factors that contribute to model collapse

Introducing a new baseline – *persistent TTA (PeTTA).* PeTTA strikes a balance between two objectives: adaptation and collapse prevention

For more information, visit our project page at — See you at:

POSTER SECTION 4 (Thursday Afternoon)

