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Context: Motivation for Test-time Adaptation (TTA)

Let’s look at a real-world scenario: deploying a machine learning (ML) model for traffic 
surveillance camera system

Training dataset

Training

Unforeseen circumstances can introduce domain-shift and severely reduce ML 
model’s performance at test-time
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How can we fix it?
• Making the ML model learnable at test time
• Utilizing unlabeled data at test time for 

adaptation
• TTA has been showing many “good” results!
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Background: Test-time Adaptation for ML Model Deployment

𝜃! 𝜃" 

𝜃# 𝜃$%! 
𝒫! 𝒫# 𝒫" 𝒫$…

Online testing stream

Test-time Adaptation (TTA): TTA operates on an ML classifier 𝑓!: 	𝒳 → 𝒴, parameterized 
by 𝜃! ∈ Θ gradually changing over time. 

Does the model performance/adaptability persist after a long time adapting to 
multiple environments?  

What could go wrong?

Unfortunately,  can not be guaranteed … we call it “TTA model collapsing”

Online testing stream: The model explores an online stream of testing data 𝑋! ∼ 𝒫! 
for adapting itself 𝑓!"# → 𝑓! (self-supervised learning) before predicting -𝑌! = 	𝑓! 𝑋! .

𝜃& 

Pre-trained 
model on 

source dataset  
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Benchmark: Recurring Test-time Adaptation 

Recurring Test-time Adaptation (TTA)
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Abstract

Current test-time adaptation (TTA) approaches aim to
adapt to environments that change continuously. Yet, when
the environments not only change but also recur in a cor-
related manner over time, such as in the case of day-night
surveillance cameras, it is unclear whether the adaptability
of these methods is sustained after a long run. This study
aims to examine the error accumulation of TTA models
when they are repeatedly exposed to previous testing envi-
ronments, proposing a novel testing setting called episodic
TTA. To study this phenomenon, we design a simulation
of TTA process on a simple yet representative ✏-perturbed
Gaussian Mixture Model Classifier and derive the theoreti-
cal findings revealing the dataset- and algorithm-dependent
factors that contribute to the gradual degeneration of TTA
methods through time. Our investigation has led us to pro-
pose a method, named persistent TTA (PeTTA). PeTTA
senses the model divergence towards a collapsing and ad-
justs the adaptation strategy of TTA, striking a balance
between two primary objectives: adaptation and prevent-
ing model collapse. The stability of PeTTA in the face of
episodic TTA scenarios has been demonstrated over com-
prehensive experiments on various benchmarks.

1. Introduction
Machine learning (ML) models have demonstrated signifi-
cant achievements in various computer vision areas [17, 21,
34, 41], but they are inherently susceptible to distribution-
shift [6, 13, 19, 40, 42] (also known as the divergence be-
tween the training and testing environments), leading to a
significant degradation in model performance. The ability
to deviate from the conventional testing setting appears as
a crucial aspect in boosting ML models’ adaptability when
confronted with a new testing environment that has been in-
vestigated in the literature [14, 27, 46]. Among domain gen-
eralization methods [1, 22, 51], test-time adaptation (TTA)
takes the most challenging yet rewarding path that leverag-
ing unlabeled data available at test time for self-supervised
adaptation prior to the final inference [8, 35, 37, 50, 52].
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Figure 1. Episodic Test-time Adaption (TTA). (top) Testing en-
vironments may change episodically and preserving adaptabil-
ity when visiting the same testing condition is not guaranteed in
most cases. (bottom) The testing error of RoTTA [54] progres-
sively raises (performance degradation) and exceeds the error of
the source model (no TTA) while our PeTTA demonstrates its sta-
bility when adapting to the test set of CIFAR-10-C [18] 20 times.
The shaded lines in the background represent the testing error on
each domain and the bold lines denote the running mean. For clar-
ity, only the running mean of the source model is shown.

Early TTA studies have concentrated on a simply ideal
adaptation scenario where the test samples come from a
fixed single domain [35, 37, 50]. As a result, such an as-
sumption is far from the ever-changing and complex testing
environments, limiting their performance when deploying
in real-world applications. To confront continually chang-
ing environments [12, 52], Yuan et al. [54] proposed a prac-
tical TTA scenario where distribution changing and correl-
ative sampling occur [15] simultaneously at the test phase.
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• In practice, testing environments may 
change recurringly 

• Preserving adaptability when visiting the 
same testing condition is not guaranteed

Hypothetical Setting Empirical Experiment

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Persistent Test-time Adaptation in Repeating Testing Scenarios
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Abstract
Current test-time adaptation (TTA) approaches
aim to adapt to environments that change con-
tinuously. Yet, when the environments not only
change but also recur in a correlated manner over
time, it is unclear whether the adaptability of these
methods is sustained after a long run. This study
aims to examine the error accumulation of TTA
models when they are repeatedly exposed to previ-
ous testing environments, proposing a novel test-
ing setting called repeating TTA. We simulate
a TTA process on a simple yet representative ✏-
perturbed Gaussian Mixture Model Classifier
and derive the theoretical findings revealing the
dataset- and algorithm-dependent factors that con-
tribute to the gradual degeneration. Our inves-
tigation has led us to propose persistent TTA
(PeTTA) that senses the model divergence to-
wards a collapsing and adjusts the adaptation strat-
egy, striking a balance between two primary objec-
tives: adaptation and preventing model collapse.
The stability of PeTTA in the face of repeating
TTA scenarios has been demonstrated over com-
prehensive experiments on various benchmarks.

1. Introduction
Machine learning (ML) models have demonstrated sig-
nificant achievements in various areas (He et al., 2015;
Mildenhall et al., 2020; Radford et al., 2021; Isensee et al.,
2021). Still, they are inherently susceptible to distribution-
shift (Quionero-Candela et al., 2009; Ganin & Lempitsky,
2015; Recht et al., 2019; Hendrycks et al., 2021; Blaas et al.,
2023) (also known as the divergence between the training
and testing environments), leading to a significant degrada-
tion in model performance. The ability to deviate from the
conventional testing setting appears as a crucial aspect in
boosting ML models’ adaptability when confronted with
a new testing environment that has been investigated (Li

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.
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Figure 1. Repeating Test-time Adaption (TTA). (top) Testing en-
vironments may change repetitively and preserving adaptability
when visiting the same testing condition is not guaranteed in most
cases. (bottom) The testing error of RoTTA (Yuan et al., 2023) pro-
gressively raises (performance degradation) and exceeds the error
of the source model (no TTA) while our PeTTA demonstrates its
stability when adapting to the test set of CIFAR-10-C (Hendrycks
& Dietterich, 2019) 20 times. The bold lines denote the running
mean and the shaded lines in the background represent the testing
error on each domain (excluding the source model, for clarity).

et al., 2018; Sun et al., 2020; Ganin et al., 2017). Among do-
main generalization methods (Wang et al., 2021b; Iwasawa
& Matsuo, 2021; Ahuja et al., 2021), test-time adaptation
(TTA) takes the most challenging yet rewarding path that
leveraging unlabeled data available at test time for self-
supervised adaptation prior to the final inference (Wang
et al., 2021a; Nguyen et al., 2023; Chen et al., 2022; Niu
et al., 2023; Wang et al., 2022).

Early TTA studies have concentrated on a simply ideal adap-
tation scenario where the test samples come from a fixed
single domain (Wang et al., 2021a; Nguyen et al., 2023; Niu
et al., 2023). As a result, such an assumption is far from the
ever-changing and complex testing environments. To con-

1

Recurring TTA on CIFAR-10-C (corrupted)

• Testing error of RoTTA [Yuan, 2023], a baseline 
TTA algorithm raises - performance degradation

• Quickly exceeding the error of the source model 
(without TTA, accepting domain shift as-it-is) 

• PeTTA (ours) demonstrates its stability

Recurring Test−time Adaptation:	 𝒫# → 𝒫$ → ⋯ → 𝒫% → ⋯ → 𝒫#→  𝒫$ → ⋯ → 𝒫%
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Overview: Persistent Test-time Adaptation (PeTTA)

Model collapsing of TTA 

Observation
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Abstract

Current test-time adaptation (TTA) approaches aim to
adapt to environments that change continuously. Yet, when
the environments not only change but also recur in a cor-
related manner over time, such as in the case of day-night
surveillance cameras, it is unclear whether the adaptability
of these methods is sustained after a long run. This study
aims to examine the error accumulation of TTA models
when they are repeatedly exposed to previous testing envi-
ronments, proposing a novel testing setting called episodic
TTA. To study this phenomenon, we design a simulation
of TTA process on a simple yet representative ✏-perturbed
Gaussian Mixture Model Classifier and derive the theoreti-
cal findings revealing the dataset- and algorithm-dependent
factors that contribute to the gradual degeneration of TTA
methods through time. Our investigation has led us to pro-
pose a method, named persistent TTA (PeTTA). PeTTA
senses the model divergence towards a collapsing and ad-
justs the adaptation strategy of TTA, striking a balance
between two primary objectives: adaptation and prevent-
ing model collapse. The stability of PeTTA in the face of
episodic TTA scenarios has been demonstrated over com-
prehensive experiments on various benchmarks.

1. Introduction
Machine learning (ML) models have demonstrated signifi-
cant achievements in various computer vision areas [17, 21,
34, 41], but they are inherently susceptible to distribution-
shift [6, 13, 19, 40, 42] (also known as the divergence be-
tween the training and testing environments), leading to a
significant degradation in model performance. The ability
to deviate from the conventional testing setting appears as
a crucial aspect in boosting ML models’ adaptability when
confronted with a new testing environment that has been in-
vestigated in the literature [14, 27, 46]. Among domain gen-
eralization methods [1, 22, 51], test-time adaptation (TTA)
takes the most challenging yet rewarding path that leverag-
ing unlabeled data available at test time for self-supervised
adaptation prior to the final inference [8, 35, 37, 50, 52].
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Figure 1. Episodic Test-time Adaption (TTA). (top) Testing en-
vironments may change episodically and preserving adaptabil-
ity when visiting the same testing condition is not guaranteed in
most cases. (bottom) The testing error of RoTTA [54] progres-
sively raises (performance degradation) and exceeds the error of
the source model (no TTA) while our PeTTA demonstrates its sta-
bility when adapting to the test set of CIFAR-10-C [18] 20 times.
The shaded lines in the background represent the testing error on
each domain and the bold lines denote the running mean. For clar-
ity, only the running mean of the source model is shown.

Early TTA studies have concentrated on a simply ideal
adaptation scenario where the test samples come from a
fixed single domain [35, 37, 50]. As a result, such an as-
sumption is far from the ever-changing and complex testing
environments, limiting their performance when deploying
in real-world applications. To confront continually chang-
ing environments [12, 52], Yuan et al. [54] proposed a prac-
tical TTA scenario where distribution changing and correl-
ative sampling occur [15] simultaneously at the test phase.
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Persisting Test-time Adaptation (PeTTA)

Baseline Approach

(1) Sensing the divergence from !!

the rationale behind these effective strategies before intro-
ducing our solution to bolster the resilience of TTA.
Regularization Term for ✓t. Knowing that f0 is always
well-behaved, an attempt is restricting the divergence of ✓t
from ✓0, e.g. using R(✓t)

�
= k✓0 � ✓tk22 (L2 regulariza-

tion [36]). The key idea is introducing a penalty term to
avoid an extreme divergence as happening in Thm. 1.
Memory Bank for Harmonizing Pt(x). Upon receiving
Xt, samples in this batch are selectively updated to a mem-
ory bank M (which already contains a subset of some in-
stances of Xt0 , t

0
< t in the previous steps). By keeping a

balanced number of samples from each category, distribu-
tion P

M
t (y) of samples in M is expected to have less zero

entries than Pt(y), making the optimization step over PM
t

more desirable. From Thm. 1, M moderates the extreme
value of the category distribution (p0 term) which typically
appears on batches with low intra-batch category diversity.

5. Persistent Test-time Adaptation (PeTTA)
Now we introduce our Persistent TTA (PeTTA) approach.
Further inspecting Thm. 1, while ✏t (Eq. 5) is not com-
putable without knowing the true labels, the measure of di-
vergence from the initial distribution (analogously to d

0!1
t�1

term) can provide hints to fine-tune the adaptation process.
Key Idea. A proper adjustment toward the TTA algorithm
can break the chain of increasing ✏t’s in Corollary 1 to pre-
vent the model collapse. In the mean teacher update, the
larger value of � (Eq. 2) prioritizes the task of preventing
collapse on one hand but also limits its adaptability to the
new testing environment. Meanwhile, ↵ (Eq. 3) controls the
weight on preserving versus changing the model from the
previous step. Drawing inspiration from the exploration-
exploitation tradeoff [23, 43] encountered in reinforcement
learning [47], we introduce a mechanism for adjusting �

and ↵ on the fly, balancing between the two primary ob-
jectives: adaptation and preventing model collapse. Our
strategy is prioritizing collapse prevention (increasing �)
and preserving the model from previous steps (decreasing
↵) when there is a significant deviation from ✓0.

Different from prior studies, the choice of � [36] and
↵ [52, 54] was selected by hyper-parameter tuning and kept
constant over time. This is less than the ideal approach
in TTA, where a testing environment might vary and the
validation set is typically unavailable [55]. Furthermore,
Thm. 1 suggests the rate of convergence quickly escalates
when ✏t increases. Hence, constant values for �,↵ might be
insufficient to stop the collapsing.
Sensing the Divergence of ✓t. We first equip PeTTA with
a mechanism for measuring its divergence from ✓0. No-
ticed that with ft(x) = argmax y2Y Pr(y|x; ✓t), we can
decompose Pr(y|x; ✓t) = [h (�✓t(x))]y , with �✓t(·) is a
✓t-parameterized deep feature extractor followed by a fixed
classification head (a linear and softmax layer) h(·). The

operator [·]y extracts the y
th component of a vector.

Since h(·) remains unchanged over time, instead of com-
paring the divergence in the parameter space (⇥) or between
the output probability Pr(y|x; ✓t) and Pr(y|x; ✓0), we sug-
gest an inspection over the feature embedding space that
preserves a maximum amount of information in our case
(data processing inequality [9]). Inspired by [28] and un-
der Gaussian assumption, the alignment of the first moment
of the feature embedding vectors is being compared. Let
z = �✓t(x), we keep track of a collection of the running
mean of feature vector z: {µ̂y

t }y2Y in which µ̂y
t is EMA

updated with vector z if ft(x) = y. The divergence of ✓t at
step t, evaluated on class y is defined as:

�
y
t = 1� exp

⇣
�(µ̂y

t � µy
0)

T (⌃y
0)

�1
(µ̂y

t � µy
0)
⌘
, (6)

where µy
0 and ⌃y

0 are the pre-computed empirical mean and
covariant matrix of feature vectors in the training set (P0).
For simplicity, the covariant matrix is diagonal.

Here, we implicitly expect the independence of each en-
try in z and TTA approaches learn to align feature vectors
of new domains back to the source domain (P0). Therefore,
the accumulated statistics of these feature vectors at each
step should be concentrated near the vectors of the initial
model. The value of �y

t 2 [0, 1] is close to 0 when ✓t = ✓0

and increases exponentially as µ̂y
t diverging from µy

0 .
Adaptive Regularization and Model Update. Utilizing
�
y
t derived in Eq. 6, a pair of (�t, ↵t) is chosen at each step:

�̄t =
1

|Ŷt|

X

y2Ŷt

�
y
t , Ŷt =

n
Ŷ

(i)
t |i = 1, · · · , Nt

o
;

�t = �̄t · �0, ↵t = (1� �̄t) · ↵0, (7)

where ↵0, �0 are initial values; Ŷt is a set of unique pseudo
labels in a testing batch (Ŷ (i)

t is the i
th realization of Ŷt).

Anchor Loss. Penalizing the divergence with regular vec-
tor norms in high-dimensional space (e.g., ⇥) is insufficient
(curse of dimensionality [5, 45]), especially with a large
model and limited samples (in TTA). Hence, we propose the
use of anchor loss LAL to further nail down the similarity
between ft and f0 in the output probability space [12, 29]:

LAL(Xt; ✓) = �
X

y2Y
Pr(y|Xt; ✓0) log Pr(y|Xt; ✓), (8)

which is equivalent to minimizing the KL divergence
DKL (Pr(y|Xt; ✓0)kPr(y|Xt; ✓)).
Persistent TTA. Having all the ingredients, we design our
approach, PeTTA, following the convention setup of the
mean teacher update, with the category-balanced memory
bank and the robust batch normalization layer from [54].
For LCLS, we either adopt the self-training scheme [12] or
the regular cross-entropy [16]. With R(✓), cosine similar-
ity or L2 distance are both valid metrics for measuring the
distance between ✓ and ✓0 in the parameter space. Fisher
regularizer coefficient [24, 36] can also be used, optionally.
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try in z and TTA approaches learn to align feature vectors
of new domains back to the source domain (P0). Therefore,
the accumulated statistics of these feature vectors at each
step should be concentrated near the vectors of the initial
model. The value of �y
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t diverging from µy
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Adaptive Regularization and Model Update. Utilizing
�
y
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�t = �̄t · �0, ↵t = (1� �̄t) · ↵0, (7)

where ↵0, �0 are initial values; Ŷt is a set of unique pseudo
labels in a testing batch (Ŷ (i)

t is the i
th realization of Ŷt).

Anchor Loss. Penalizing the divergence with regular vec-
tor norms in high-dimensional space (e.g., ⇥) is insufficient
(curse of dimensionality [5, 45]), especially with a large
model and limited samples (in TTA). Hence, we propose the
use of anchor loss LAL to further nail down the similarity
between ft and f0 in the output probability space [12, 29]:

LAL(Xt; ✓) = �
X

y2Y
Pr(y|Xt; ✓0) log Pr(y|Xt; ✓), (8)

which is equivalent to minimizing the KL divergence
DKL (Pr(y|Xt; ✓0)kPr(y|Xt; ✓)).
Persistent TTA. Having all the ingredients, we design our
approach, PeTTA, following the convention setup of the
mean teacher update, with the category-balanced memory
bank and the robust batch normalization layer from [54].
For LCLS, we either adopt the self-training scheme [12] or
the regular cross-entropy [16]. With R(✓), cosine similar-
ity or L2 distance are both valid metrics for measuring the
distance between ✓ and ✓0 in the parameter space. Fisher
regularizer coefficient [24, 36] can also be used, optionally.

(3) Anchor Loss

To sum up, the teacher model update of PeTTA is an elabo-
rated version of EMA with �t,↵t (Eq. 7) and LAL (Eq. 8):

✓0t = Optim

✓02⇥
EPt

h
LCLS

⇣
Ŷt, Xt; ✓

0
⌘
+ LAL

�
Xt; ✓

0�i+ �tR(✓0)

✓t = (1� ↵t)✓t�1 + ↵t✓
0
t.

6. Experimental Results
6.1. ✏�GMMC Simmulation Result
Setup. A total of 6000 samples from two Gaussian dis-
tributions: N (µ0 = 0,�2

0 = 1) and N (µ1 = 2,�2
1 = 1)

with p0 = p1 = 1
2 are synthesized and gradually released

in a batch of B = 10 samples. For evaluation, an indepen-
dent set of 2000 samples following the same distribution is
used for computing the prediction frequency, and the false
negative rate (FNR). ✏�GMMC update follows Eq. 4 with
↵ = 5e�2. To simulate model collapse, the predictor is in-
tercepted and 10% of the true-postive pseudo labels at each
testing step are randomly flipped (Corollary 1).
Simulation Result. In action, both the likelihood of pre-
dicting class 0 (Fig. 3a-top) and the ✏t (Eq. 5) (Fig. 3c-
right, solid line) gradually increases over time as expected
(Lemma 1). After collapsing, ✏-GMMC merges the two
initial clusters, resulting in a single one (Fig. 3b-left)
with parameters that match Lemma 2. The distance from
µ̂0,t (initialized at µ0) towards µ1 converges (Fig. 3c-left,
solid line), coincided with the analysis in Thm. 1 when
✏t is chosen following Corollary 1 (Fig. 3c, dashed line).
GMMC (perturbed-free) stably produces accurate predic-
tions (Fig. 3a-bottom) and approximates the true data distri-
bution (Fig. 3b-right). The simulation empirically validates
our analysis (Sec. 4.2), confirming the vulnerability of TTA
models when the pseudo labels are inaccurately estimated.

6.2. Setup - Benchmark Datasets
Datasets. We benchmark the performance on common TTA
classification tasks: CIFAR10 ! CIFAR10-C, CIFAR100
! CIFAR100-C [18]. In CIFAR-10-C/CIFAR-100-C, 15
types of common image corruptions are applied. The most
severe corruption level is used. Beyond regular image cor-
ruptions, we consider DomainNet dataset [39] with 126 cat-
egories in four domains (real, sketch, painting, clipart). The
average classification error across all scenarios is reported.
Compared Methods. Besides our PeTTA method, the fol-
lowing continual TTA, source-free approaches are studied:
RoTTA [54], RMT [12], CoTTA [52], MECTA [20]. Note-
worthy, only RoTTA [54] is specifically designed for the
practical TTA setting while the construction of other meth-
ods only fits the purpose of continual TTA in general. A
parameter-free TTA approach: LAME [7] is also included.
Episodic TTA. Following the practical TTA setup [54],
multiple testing scenarios from each testing set will grad-
ually change from one to another while the Dirichlet distri-
bution Dir(0.1) for CIFAR10-C and DomainNet, Dir(0.01)

for CIFAR100-C) generates category temporally correlated
batches of data. For all experiments, we set the number of
revisits K = 20 (times) as this number is sufficient to fully
observe the gradual degradation on existing TTA baselines.
Implementation Details. All experiments are implemented
in PyTorch [38]. RobustBench [10] provides pre-trained
models on the source distribution. Hyper-parameter choices
are kept as close as possible to the original selections of au-
thors. Unless otherwise noted, for all PeTTA experiments,
the EMA update rate for robust batch normalization [54]
and feature embedding statistics is set to 5e�2; ↵0 = 1e�3

and cosine similarity regularizer is used. On CIFAR10-
C/CIFAR100-C we use symmetry cross-entropy loss [12]
and �0 = 10 while the regular cross-entropy loss [13] and
�0 = 1 (severe domain shift requires prioritizing adaptabil-
ity) are applied in DomainNet experiments.
6.3. Result - Benchmark Datasets
Episodic TTA Performance. Fig. 1-bottom presents
the testing error on CIFAR-10-C in episodic TTA setting.
RoTTA [54] exhibits promising performance in the first sev-
eral visits but soon raises and eventually exceeds the source
model (no TTA). The classification error of baseline meth-
ods on CIFAR-10!CIFAR-10-C, CIFAR-100!CIFAR-
100-C, and real ! clipart, painting, sketch of DomainNet
are shown in Tab. 1, Tab. 2, and Tab. 3. The observed per-
formance degradation of CoTTA [52], RoTTA [54] con-
firms the risk of error accumulation for an extensive pe-
riod. While RMT [12] and MECTA [20] remain stable, they
failed to adapt to the temporally correlated test stream at the
beginning, with a higher error rate than the source model.
LAME [7] (parameter-free TTA) does not suffer from col-
lapsing, but the accuracy is lagging behind since its perfor-
mance is constrained by the source model, and knowledge
acquisition via learning is impossible [7, 54].

In average, PeTTA simultaneously outperforms all base-
line approaches (including state-of-the-art RoTTA [54] and
LAME [7]) and persists across 20 visits over the three
datasets (see Fig. 1b-bottom, Fig. 4a-bottom for CIFAR-10-
C visualization). To accommodate collapsing prevention,
the degree of freedom for adaptation in PeTTA is more con-
strained. Hence, it takes a bit longer time for adaptation in
the first several visits but remains stable afterward. Fig. 4b-
right exhibits the confusion matrix at the last visit with sat-
isfactory accuracy among all categories.
Collapsing Pattern. The rise in classification error (Fig 1-
bottom) can be reasoned by observing the prediction fre-
quency of RoTTA [54] in an episodic TTA setting (Fig. 4a-
top). Similar to ✏-GMMC, the likelihood of receiving pre-
dictions on certain categories gradually increases and domi-
nates the others. Further inspecting the confusion matrix of
a collapsed model (Fig. 4b-left) reveals two major groups
of categories are formed and a single category within each
group represents all members, thereby becoming dominant.

PeTTA

the rationale behind these effective strategies before intro-
ducing our solution to bolster the resilience of TTA.
Regularization Term for ✓t. Knowing that f0 is always
well-behaved, an attempt is restricting the divergence of ✓t
from ✓0, e.g. using R(✓t)

�
= k✓0 � ✓tk22 (L2 regulariza-

tion [36]). The key idea is introducing a penalty term to
avoid an extreme divergence as happening in Thm. 1.
Memory Bank for Harmonizing Pt(x). Upon receiving
Xt, samples in this batch are selectively updated to a mem-
ory bank M (which already contains a subset of some in-
stances of Xt0 , t

0
< t in the previous steps). By keeping a

balanced number of samples from each category, distribu-
tion P

M
t (y) of samples in M is expected to have less zero

entries than Pt(y), making the optimization step over PM
t

more desirable. From Thm. 1, M moderates the extreme
value of the category distribution (p0 term) which typically
appears on batches with low intra-batch category diversity.

5. Persistent Test-time Adaptation (PeTTA)
Now we introduce our Persistent TTA (PeTTA) approach.
Further inspecting Thm. 1, while ✏t (Eq. 5) is not com-
putable without knowing the true labels, the measure of di-
vergence from the initial distribution (analogously to d

0!1
t�1

term) can provide hints to fine-tune the adaptation process.
Key Idea. A proper adjustment toward the TTA algorithm
can break the chain of increasing ✏t’s in Corollary 1 to pre-
vent the model collapse. In the mean teacher update, the
larger value of � (Eq. 2) prioritizes the task of preventing
collapse on one hand but also limits its adaptability to the
new testing environment. Meanwhile, ↵ (Eq. 3) controls the
weight on preserving versus changing the model from the
previous step. Drawing inspiration from the exploration-
exploitation tradeoff [23, 43] encountered in reinforcement
learning [47], we introduce a mechanism for adjusting �

and ↵ on the fly, balancing between the two primary ob-
jectives: adaptation and preventing model collapse. Our
strategy is prioritizing collapse prevention (increasing �)
and preserving the model from previous steps (decreasing
↵) when there is a significant deviation from ✓0.

Different from prior studies, the choice of � [36] and
↵ [52, 54] was selected by hyper-parameter tuning and kept
constant over time. This is less than the ideal approach
in TTA, where a testing environment might vary and the
validation set is typically unavailable [55]. Furthermore,
Thm. 1 suggests the rate of convergence quickly escalates
when ✏t increases. Hence, constant values for �,↵ might be
insufficient to stop the collapsing.
Sensing the Divergence of ✓t. We first equip PeTTA with
a mechanism for measuring its divergence from ✓0. No-
ticed that with ft(x) = argmax y2Y Pr(y|x; ✓t), we can
decompose Pr(y|x; ✓t) = [h (�✓t(x))]y , with �✓t(·) is a
✓t-parameterized deep feature extractor followed by a fixed
classification head (a linear and softmax layer) h(·). The

operator [·]y extracts the y
th component of a vector.

Since h(·) remains unchanged over time, instead of com-
paring the divergence in the parameter space (⇥) or between
the output probability Pr(y|x; ✓t) and Pr(y|x; ✓0), we sug-
gest an inspection over the feature embedding space that
preserves a maximum amount of information in our case
(data processing inequality [9]). Inspired by [28] and un-
der Gaussian assumption, the alignment of the first moment
of the feature embedding vectors is being compared. Let
z = �✓t(x), we keep track of a collection of the running
mean of feature vector z: {µ̂y

t }y2Y in which µ̂y
t is EMA

updated with vector z if ft(x) = y. The divergence of ✓t at
step t, evaluated on class y is defined as:

�
y
t = 1� exp

⇣
�(µ̂y

t � µy
0)

T (⌃y
0)

�1
(µ̂y

t � µy
0)
⌘
, (6)

where µy
0 and ⌃y

0 are the pre-computed empirical mean and
covariant matrix of feature vectors in the training set (P0).
For simplicity, the covariant matrix is diagonal.

Here, we implicitly expect the independence of each en-
try in z and TTA approaches learn to align feature vectors
of new domains back to the source domain (P0). Therefore,
the accumulated statistics of these feature vectors at each
step should be concentrated near the vectors of the initial
model. The value of �y

t 2 [0, 1] is close to 0 when ✓t = ✓0

and increases exponentially as µ̂y
t diverging from µy

0 .
Adaptive Regularization and Model Update. Utilizing
�
y
t derived in Eq. 6, a pair of (�t, ↵t) is chosen at each step:

�̄t =
1

|Ŷt|

X

y2Ŷt

�
y
t , Ŷt =

n
Ŷ

(i)
t |i = 1, · · · , Nt

o
;

�t = �̄t · �0, ↵t = (1� �̄t) · ↵0, (7)

where ↵0, �0 are initial values; Ŷt is a set of unique pseudo
labels in a testing batch (Ŷ (i)

t is the i
th realization of Ŷt).

Anchor Loss. Penalizing the divergence with regular vec-
tor norms in high-dimensional space (e.g., ⇥) is insufficient
(curse of dimensionality [5, 45]), especially with a large
model and limited samples (in TTA). Hence, we propose the
use of anchor loss LAL to further nail down the similarity
between ft and f0 in the output probability space [12, 29]:

LAL(Xt; ✓) = �
X

y2Y
Pr(y|Xt; ✓0) log Pr(y|Xt; ✓), (8)

which is equivalent to minimizing the KL divergence
DKL (Pr(y|Xt; ✓0)kPr(y|Xt; ✓)).
Persistent TTA. Having all the ingredients, we design our
approach, PeTTA, following the convention setup of the
mean teacher update, with the category-balanced memory
bank and the robust batch normalization layer from [54].
For LCLS, we either adopt the self-training scheme [12] or
the regular cross-entropy [16]. With R(✓), cosine similar-
ity or L2 distance are both valid metrics for measuring the
distance between ✓ and ✓0 in the parameter space. Fisher
regularizer coefficient [24, 36] can also be used, optionally.

(2) Adaptive Learning Rate and Regularization

𝜺-Gaussian Mixture Model Classifier (𝜺-GMMC)

Pseudo-label Predictor
Ŷt = argmax

y2Y
Pr(Xt|y; ✓t�1)

Xt

Mean-teacher Update
✓0
t = Optim

✓02⇥
EPt

h
LCLS

⇣
Ŷt, Xt; ✓

0
⌘i

✓t = (1 � ↵)✓t�1 + ↵✓0
t

✏t

· · · ✓t�1 ✓t · · ·

Figure 2. Diagram of our proposed ✏-perturbed binary Gaussian
Mixture Model Classifier (✏�GMMC), imitating a regular contin-
ual TTA algorithm for theoretical analysis. Two main components
include a predictor for producing pseudo-label Ŷt (Eq. 1), and a
mean teacher update (Eqs. 2, 3). The predictor is perturbed for
retaining a false negative rate of ✏t to simulate undesirable effects
of the testing stream in TTA, making ✏�GMMC prone to collapse.

Pr(Yt = y) and p̂y,t
�
= Pr(Ŷt = y) denote the marginal

distribution of the true label Yt and pseudo label Ŷt.
GMMC and TTA. GMMC first implies an equal prior dis-
tribution by construction which is desirable for the actual
TTA algorithms (e.g., category-balanced sampling strate-
gies in [15, 54]). Thus, it simplifies ft into a maximum
likelihood estimation ft(x) = argmaxy2Y Pr(x|y; ✓t) with
Pr(x|y; ✓t) = N (x; µ̂y,t, �̂

2
y,t). The goal is estimating a

set of parameters ✓t = {µ̂y,t, �̂
2
y,t}y2Y . A perfect classifier

✓0 = {µy,�
2
y}y2Y is initialized at t = 0. For the con-

secutive steps, the simplicity of GMMC allows solving the
Optim (for finding ✓

0
t, Eq. 2) perfectly by computing the

empirical mean and variance of new samples, approximat-
ing EPt . The mean teacher update (Eq. 3) for GMMC is:

µ̂y,t =

(
(1� ↵)µ̂y,t�1 + ↵EPt

h
Xt|Ŷt

i
if Ŷt = y

µ̂y,t�1 otherwise
(4)

The update of �̂
2
y,t is similar. Ŷt = ft�1(Xt) can be

interpreted as a pseudo label (Eq. 1).
✏-GMMC. Severe distribution shifts or low intra-batch cat-
egory diversity of episodic/practical TTA both result in an
increase in the error rate of the predictor. Instead of di-
rectly modeling the dynamic changes of py,t (which can
be complicated depending on the dataset), we conduct our
study on ✏�pertubed GMMC (✏�GMMC), where py,t is
assumed to be static (defined below) and the pseudo-label
predictor of this model is perturbed to simulate undesirable
effects of the testing stream on the predictor.

Two kinds of errors appear in a binary classifier [4]. Let

✏t = Pr{Yt = 1|Ŷt = 0} (5)

be the false negative rate (FNR) of the model at step t. With-
out loss of generality, we study a particular increasing type
II collapse of ✏-GMMC. By flipping the true positive pseudo
labels in simulation, an FNR of ✏t is maintained (Fig. 2).

Assumption 1 (Static Data Stream). The marginal distri-
bution of the true label follows the same Bernoulli distribu-
tion Ber(p0): p0,t = p0, (p1,t = p1 = 1� p0), 8t 2 T .

Lemma 1 (Increasing FNR). Under Assumption 1, a bi-
nary ✏-GMMC would collapsed (Def. 1) with lim

t!⌧
p̂1,t = 0

(or lim
t!⌧

p̂0,t = 1, equivalently) if and only if lim
t!⌧

✏t = p1.

Lemma 1 states the negative correlation between p̂1,t and
✏t. Unsurprisingly, towards the collapsing point where all
predictions are zeros, the FNR also increases at every step
and eventually reaches the highest possible FNR of p1.

Lemma 2 (✏-GMMC After Collapsing). For a binary ✏-
GMMC model, with Assumption 1, if lim

t!⌧
p̂1,t = 0 (collaps-

ing), the cluster 0 in GMMC converges in distribution to a
single-cluster GMMC with parameters:

N (µ̂0,t, �̂
2
0,t)

d.! N (p0µ0 + p1µ1,

p0�
2
0 + p1�

2
1 + p0p1(µ0 � µ1)

2).

Lemma 2 states the resulting ✏�GMMC after collaps-
ing. Cluster 0 now covers the whole data distribution (and
assigning label 0 for all samples). Furthermore, collapsing
happens when µ̂0,t moves toward µ1. We next investigate
the factors and conditions for this undesirable convergence.

Theorem 1 (Convergence of ✏�GMMC). For a binary ✏-
GMMC model, with Assumption 1, let the distance from µ̂0,t

toward µ1 is d0!1
t = |EPt [µ̂0,t]� µ1|, then:

d
0!1
t � d

0!1
t�1  ↵ · p0 ·

✓
|µ0 � µ1|�

d
0!1
t�1

1� ✏t

◆
.

From Thm. 1, we observe that the distance d
0!1
t ’s con-

verges (also indicating the convergence to the distribution
in Lemma 2) if d0!1

t < d
0!1
t�1 . The model collapse happens

when this condition holds for a sufficiently long period.

Corollary 1 (A Condition for ✏�GMMC Collapse). With
fixed p0, ↵, µ0, µ1, ✏�GMMC is collapsed if there exists a
sequence of {✏t}⌧⌧��⌧

(⌧ � �⌧ > 0) such that:

p1 � ✏t > 1�
d
0!1
t�1

|µ0 � µ1|
, t 2 [⌧ ��⌧ , ⌧ ].

Corollary 1 introduces a condition ✏-GMMC collapse.
Here, ✏t’s are non-decreasing, following that lim

t!⌧
✏t = p1.

Remarks. Thm. 1 concludes two sets of factors contribut-
ing to collapse: (i) data-dependent factors: the prior data
distribution (p0), the nature difference between two cate-
gories (|µ0�µ1|); and (ii) algorithm-dependent factors: the
update rate (↵), the FNR at each step (✏t). ✏-GMMC analy-
sis sheds light on explaining model collapse on real datasets
(Sec. 6.3), reasons the existing approaches (Sec. 4.3) and
motivates the development of our baseline (Sec. 5).

4.3. Connection to Existing Solutions
Prior TTA algorithms have already incorporated implicit
mechanisms to mitigate model collapse. We briefly discuss
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Theoretical Analysis: 𝜀-Gaussian Mixture Model Classifier (𝜺-GMMC)

Goal: Simulating a simple yet representative failure case of TTA for theoretical analysis

• Data stream: 𝒳	×	𝒴 = 	ℝ	× 0,1  and the underlying joint distribution 𝑃! 𝑥, 𝑦 =
𝑝&,!𝒩 𝑥; 𝜇& , 𝜎&$  with 𝑝&,! = Pr(𝑌! = 𝑦) - true label and �̂�&,! = 	Pr -𝑌! = 𝑦  - predicted label

• Task: predicting 𝑋! was sampled from cluster 0 or 1 (negative or positive)

• “Noisy” pseudo-label predictor: The predictor is perturbed for retaining a false negative 
rate (FNR) of ε' = Pr{𝑌' = 1| )𝑌' = 0	}	to simulate undesirable effects of the TTA testing stream
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Persistent Test-time Adaptation in Repeating Testing Scenarios

preserve in-distribution performance, regularization (Kirk-
patrick et al., 2017; Niu et al., 2022) or replaying of training
samples at test-time (Döbler et al., 2022) have been used.
Other studies explore reset (recovering the initial model
parameters) strategies (Wang et al., 2022; Press et al., 2023),
periodically or upon the running entropy loss approaches a
threshold (Niu et al., 2023). Unfortunately, knowledge accu-
mulated in the preceding steps will vanish, and a bad heuris-
tic choice of threshold or period leads to highly frequent
model resets. Noteworthy, tuning those hyper-parameters
is exceedingly difficult due to the unavailability of the vali-
dation set (Zhao et al., 2023). LAME (Boudiaf et al., 2022)
suggests a post-processing step for adaptation (without up-
dating the parameters). This approach, however, still limits
the knowledge accumulation. Our PeTTA is reset-free by
achieving an adaptable continual test-time training.

3. Background
Test-time Adaptation (TTA). A TTA algorithm operates
on an ML classifier ft : X ! Y with parameter ✓t 2 ⇥
(parameter space) gradually changing over time (t 2 T ) that
maps an input image x 2 X to a category (label) y 2 Y . Let
the capital letters (Xt, Yt) 2 X ⇥Y denote a pair of random
variables with the joint distribution Pt(x, y) 2 Pd, t 2 T .
Here, Pd belongs to collection of D sets of testing scenarios
(domains) {Pd}Dd=1. The covariate shift (Quionero-Candela
et al., 2009) is assumed: Pt(x) and Pt0(x) could be different
but Pt(y|x) = Pt0(y|x) holds 8t 6= t

0. At t = 0, ✓0

is initialized by a supervised model trained on P0 2 P0

(source dataset). The model then explores an online stream
of testing data. For each t > 0, it receives Xt (typically in
form of a batch of Nt testing samples) for adapting itself
ft�1 ! ft before making the final prediction ft (Xt).

TTA with Mean Teacher Update. To achieve a stable
optimization process, the main (teacher) model ft are up-
dated indirectly through a student model with parameters
✓
0
t (Wang et al., 2021a; Yuan et al., 2023; Döbler et al.,

2022; Gong et al., 2022; Tarvainen & Valpola, 2017). At
first, the teacher model in the previous step introduces a
pseudo label (Lee, 2013) Ŷt for each Xt:

Ŷt = ft�1(Xt). (1)

With a classification loss LCLS (e.g., cross-entropy (Grand-
valet & Bengio, 2004)), and a model parameters regularizer
R, the student model is first updated with a generic optimiza-
tion operator Optim, followed by an exponential moving
average (EMA) update of the teacher model parameter ✓t�1:

✓
0
t = Optim

✓02⇥
EPt

h
LCLS

⇣
Ŷt, Xt; ✓

0
⌘i

+ �R(✓0), (2)

✓t = (1� ↵)✓t�1 + ↵✓
0
t, (3)

with ↵ 2 (0, 1) - the update rate of EMA, � 2 R+ - weight-
ing coefficient of regularization term are hyper-parameters.

Practical TTA. In practical TTA (Yuan et al., 2023), two

characteristics of the aforementioned distribution of data
stream are noticeable. Firstly, Pt’s can be partitioned by td’s
in which {Pt}tdt=td�1

⇢ Pd. Here, each partition of consec-
utive steps follows the same underlying distribution which
will change continually through D domains (Wang et al.,
2022) (P1 ! P2 · · · ! PD). Secondly, the category distri-
bution in each testing batch is temporally correlated (Gong
et al., 2022). This means within a batch, a small subset of
categories is dominant over others, making the marginal
distribution Pt(y) = 0, 8y 62 Yt ⇢ Y even though the cate-
gory distribution over all batches are balanced. Optimizing
under this low intra-batch diversity (|Yt| ⌧ |Y|) situation
can slowly degenerate the model (Boudiaf et al., 2022).

4. Repeating TTA and Theoretical Analysis
4.1. Repeating TTA and Model Collapse
Repeating TTA. To study the gradual performance degra-
dation (or model collapse), we propose a new testing sce-
nario based on practical TTA. Conducting a single pass
through D distributions, as done in earlier studies (Yuan
et al., 2023; Wang et al., 2022), may not effectively iden-
tify the degradation. To promote consistency, our repeat-
ing TTA performs revisiting the previous distributions K

times to compare the incremental error versus the previ-
ous visits. For example, a sequence with K = 2 could be
P1 ! P2 ! · · · ! PD ! P1 ! P2 ! · · · ! PD.
Definition 1 (Model Collapse). A model is said to be col-
lapsed from step ⌧ 2 T , ⌧ < 1 if there exists a non-empty
subset of categories Ỹ ⇢ Y such that Pr{Yt 2 Ỹ} > 0 but
the marginal Pr{Ŷt 2 Ỹ} converges to zero in probability:

lim
t!⌧

Pr{Ŷt 2 Ỹ} = 0.

Here, upon collapsing, a model tends to ignore all categories
in Ỹ . As it is irrecoverable once collapsed, the only remedy
would be resetting all parameters back to ✓0.

4.2. Simulation of Failure and Theoretical Analysis

Collapsing behavior varies across datasets and the adapta-
tion processes. Formally studying this phenomenon on a
particular real dataset and a TTA algorithm is challenging.
Therefore, we propose a theoretical analysis on ✏-perturbed
binary Gaussian Mixture Model Classifier (✏-GMMC) that
shares the typical characteristics by construction and demon-
strates the same collapsing pattern in action (Sec. 6.1) as
observed on real continual TTA processes (Sec. 6.3).

Simulated Testing Stream. Observing a testing stream
with (Xt, Yt) 2 X ⇥ Y = R ⇥ {0, 1} and the underlying
joint distribution Pt(x, y) = py,t · N (x;µy,�

2
y). The main

task is predicting Xt was sampled from cluster 0 or 1 (nega-
tive or positive). Conveniently, let py,t

�
= Pt(y) = Pr(Yt =

y) and p̂y,t
�
= Pr(Ŷt = y) be the marginal distribution of

the true label Yt and pseudo label Ŷt.

3

A formal definition of model collapse:

Theoretical 𝜀-Gaussian Mixture Model Classifier (𝜺-GMMC)

Pseudo-label Predictor
Ŷt = argmax

y2Y
Pr(Xt|y; ✓t�1)

Xt
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✓0
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✓02⇥
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h
LCLS

⇣
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0
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Figure 2. Diagram of our proposed ✏-perturbed binary Gaussian
Mixture Model Classifier (✏�GMMC), imitating a regular contin-
ual TTA algorithm for theoretical analysis. Two main components
include a predictor for producing pseudo-label Ŷt (Eq. 1), and a
mean teacher update (Eqs. 2, 3). The predictor is perturbed for
retaining a false negative rate of ✏t to simulate undesirable effects
of the testing stream in TTA, making ✏�GMMC prone to collapse.

Pr(Yt = y) and p̂y,t
�
= Pr(Ŷt = y) denote the marginal

distribution of the true label Yt and pseudo label Ŷt.
GMMC and TTA. GMMC first implies an equal prior dis-
tribution by construction which is desirable for the actual
TTA algorithms (e.g., category-balanced sampling strate-
gies in [15, 54]). Thus, it simplifies ft into a maximum
likelihood estimation ft(x) = argmaxy2Y Pr(x|y; ✓t) with
Pr(x|y; ✓t) = N (x; µ̂y,t, �̂

2
y,t). The goal is estimating a

set of parameters ✓t = {µ̂y,t, �̂
2
y,t}y2Y . A perfect classifier

✓0 = {µy,�
2
y}y2Y is initialized at t = 0. For the con-

secutive steps, the simplicity of GMMC allows solving the
Optim (for finding ✓

0
t, Eq. 2) perfectly by computing the

empirical mean and variance of new samples, approximat-
ing EPt . The mean teacher update (Eq. 3) for GMMC is:

µ̂y,t =

(
(1� ↵)µ̂y,t�1 + ↵EPt

h
Xt|Ŷt

i
if Ŷt = y

µ̂y,t�1 otherwise
(4)

The update of �̂
2
y,t is similar. Ŷt = ft�1(Xt) can be

interpreted as a pseudo label (Eq. 1).
✏-GMMC. Severe distribution shifts or low intra-batch cat-
egory diversity of episodic/practical TTA both result in an
increase in the error rate of the predictor. Instead of di-
rectly modeling the dynamic changes of py,t (which can
be complicated depending on the dataset), we conduct our
study on ✏�pertubed GMMC (✏�GMMC), where py,t is
assumed to be static (defined below) and the pseudo-label
predictor of this model is perturbed to simulate undesirable
effects of the testing stream on the predictor.

Two kinds of errors appear in a binary classifier [4]. Let

✏t = Pr{Yt = 1|Ŷt = 0} (5)

be the false negative rate (FNR) of the model at step t. With-
out loss of generality, we study a particular increasing type
II collapse of ✏-GMMC. By flipping the true positive pseudo
labels in simulation, an FNR of ✏t is maintained (Fig. 2).

Assumption 1 (Static Data Stream). The marginal distri-
bution of the true label follows the same Bernoulli distribu-
tion Ber(p0): p0,t = p0, (p1,t = p1 = 1� p0), 8t 2 T .

Lemma 1 (Increasing FNR). Under Assumption 1, a bi-
nary ✏-GMMC would collapsed (Def. 1) with lim

t!⌧
p̂1,t = 0

(or lim
t!⌧

p̂0,t = 1, equivalently) if and only if lim
t!⌧

✏t = p1.

Lemma 1 states the negative correlation between p̂1,t and
✏t. Unsurprisingly, towards the collapsing point where all
predictions are zeros, the FNR also increases at every step
and eventually reaches the highest possible FNR of p1.

Lemma 2 (✏-GMMC After Collapsing). For a binary ✏-
GMMC model, with Assumption 1, if lim

t!⌧
p̂1,t = 0 (collaps-

ing), the cluster 0 in GMMC converges in distribution to a
single-cluster GMMC with parameters:

N (µ̂0,t, �̂
2
0,t)

d.! N (p0µ0 + p1µ1,

p0�
2
0 + p1�

2
1 + p0p1(µ0 � µ1)

2).

Lemma 2 states the resulting ✏�GMMC after collaps-
ing. Cluster 0 now covers the whole data distribution (and
assigning label 0 for all samples). Furthermore, collapsing
happens when µ̂0,t moves toward µ1. We next investigate
the factors and conditions for this undesirable convergence.

Theorem 1 (Convergence of ✏�GMMC). For a binary ✏-
GMMC model, with Assumption 1, let the distance from µ̂0,t

toward µ1 is d0!1
t = |EPt [µ̂0,t]� µ1|, then:

d
0!1
t � d

0!1
t�1  ↵ · p0 ·

✓
|µ0 � µ1|�

d
0!1
t�1

1� ✏t

◆
.

From Thm. 1, we observe that the distance d
0!1
t ’s con-

verges (also indicating the convergence to the distribution
in Lemma 2) if d0!1

t < d
0!1
t�1 . The model collapse happens

when this condition holds for a sufficiently long period.

Corollary 1 (A Condition for ✏�GMMC Collapse). With
fixed p0, ↵, µ0, µ1, ✏�GMMC is collapsed if there exists a
sequence of {✏t}⌧⌧��⌧

(⌧ � �⌧ > 0) such that:

p1 � ✏t > 1�
d
0!1
t�1

|µ0 � µ1|
, t 2 [⌧ ��⌧ , ⌧ ].

Corollary 1 introduces a condition ✏-GMMC collapse.
Here, ✏t’s are non-decreasing, following that lim

t!⌧
✏t = p1.

Remarks. Thm. 1 concludes two sets of factors contribut-
ing to collapse: (i) data-dependent factors: the prior data
distribution (p0), the nature difference between two cate-
gories (|µ0�µ1|); and (ii) algorithm-dependent factors: the
update rate (↵), the FNR at each step (✏t). ✏-GMMC analy-
sis sheds light on explaining model collapse on real datasets
(Sec. 6.3), reasons the existing approaches (Sec. 4.3) and
motivates the development of our baseline (Sec. 5).

4.3. Connection to Existing Solutions
Prior TTA algorithms have already incorporated implicit
mechanisms to mitigate model collapse. We briefly discuss

• Procedure: pseudo-label -𝑌! 	prediction and a mean-teacher update

• How this simple TTA model will be collapsed?
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Figure 2. Diagram of our proposed ✏-perturbed binary Gaussian
Mixture Model Classifier (✏�GMMC), imitating a regular contin-
ual TTA algorithm for theoretical analysis. Two main components
include a predictor for producing pseudo-label Ŷt (Eq. 1), and a
mean teacher update (Eqs. 2, 3). The predictor is perturbed for
retaining a false negative rate of ✏t to simulate undesirable effects
of the testing stream in TTA, making ✏�GMMC prone to collapse.

Pr(Yt = y) and p̂y,t
�
= Pr(Ŷt = y) denote the marginal

distribution of the true label Yt and pseudo label Ŷt.
GMMC and TTA. GMMC first implies an equal prior dis-
tribution by construction which is desirable for the actual
TTA algorithms (e.g., category-balanced sampling strate-
gies in [15, 54]). Thus, it simplifies ft into a maximum
likelihood estimation ft(x) = argmaxy2Y Pr(x|y; ✓t) with
Pr(x|y; ✓t) = N (x; µ̂y,t, �̂

2
y,t). The goal is estimating a

set of parameters ✓t = {µ̂y,t, �̂
2
y,t}y2Y . A perfect classifier

✓0 = {µy,�
2
y}y2Y is initialized at t = 0. For the con-

secutive steps, the simplicity of GMMC allows solving the
Optim (for finding ✓

0
t, Eq. 2) perfectly by computing the

empirical mean and variance of new samples, approximat-
ing EPt . The mean teacher update (Eq. 3) for GMMC is:

µ̂y,t =

(
(1� ↵)µ̂y,t�1 + ↵EPt

h
Xt|Ŷt

i
if Ŷt = y

µ̂y,t�1 otherwise
(4)

The update of �̂
2
y,t is similar. Ŷt = ft�1(Xt) can be

interpreted as a pseudo label (Eq. 1).
✏-GMMC. Severe distribution shifts or low intra-batch cat-
egory diversity of episodic/practical TTA both result in an
increase in the error rate of the predictor. Instead of di-
rectly modeling the dynamic changes of py,t (which can
be complicated depending on the dataset), we conduct our
study on ✏�pertubed GMMC (✏�GMMC), where py,t is
assumed to be static (defined below) and the pseudo-label
predictor of this model is perturbed to simulate undesirable
effects of the testing stream on the predictor.

Two kinds of errors appear in a binary classifier [4]. Let

✏t = Pr{Yt = 1|Ŷt = 0} (5)

be the false negative rate (FNR) of the model at step t. With-
out loss of generality, we study a particular increasing type
II collapse of ✏-GMMC. By flipping the true positive pseudo
labels in simulation, an FNR of ✏t is maintained (Fig. 2).

Assumption 1 (Static Data Stream). The marginal distri-
bution of the true label follows the same Bernoulli distribu-
tion Ber(p0): p0,t = p0, (p1,t = p1 = 1� p0), 8t 2 T .

Lemma 1 (Increasing FNR). Under Assumption 1, a bi-
nary ✏-GMMC would collapsed (Def. 1) with lim

t!⌧
p̂1,t = 0

(or lim
t!⌧

p̂0,t = 1, equivalently) if and only if lim
t!⌧

✏t = p1.

Lemma 1 states the negative correlation between p̂1,t and
✏t. Unsurprisingly, towards the collapsing point where all
predictions are zeros, the FNR also increases at every step
and eventually reaches the highest possible FNR of p1.

Lemma 2 (✏-GMMC After Collapsing). For a binary ✏-
GMMC model, with Assumption 1, if lim

t!⌧
p̂1,t = 0 (collaps-

ing), the cluster 0 in GMMC converges in distribution to a
single-cluster GMMC with parameters:

N (µ̂0,t, �̂
2
0,t)

d.! N (p0µ0 + p1µ1,

p0�
2
0 + p1�

2
1 + p0p1(µ0 � µ1)

2).

Lemma 2 states the resulting ✏�GMMC after collaps-
ing. Cluster 0 now covers the whole data distribution (and
assigning label 0 for all samples). Furthermore, collapsing
happens when µ̂0,t moves toward µ1. We next investigate
the factors and conditions for this undesirable convergence.

Theorem 1 (Convergence of ✏�GMMC). For a binary ✏-
GMMC model, with Assumption 1, let the distance from µ̂0,t

toward µ1 is d0!1
t = |EPt [µ̂0,t]� µ1|, then:

d
0!1
t � d

0!1
t�1  ↵ · p0 ·

✓
|µ0 � µ1|�
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From Thm. 1, we observe that the distance d
0!1
t ’s con-

verges (also indicating the convergence to the distribution
in Lemma 2) if d0!1

t < d
0!1
t�1 . The model collapse happens

when this condition holds for a sufficiently long period.

Corollary 1 (A Condition for ✏�GMMC Collapse). With
fixed p0, ↵, µ0, µ1, ✏�GMMC is collapsed if there exists a
sequence of {✏t}⌧⌧��⌧

(⌧ � �⌧ > 0) such that:

p1 � ✏t > 1�
d
0!1
t�1

|µ0 � µ1|
, t 2 [⌧ ��⌧ , ⌧ ].

Corollary 1 introduces a condition ✏-GMMC collapse.
Here, ✏t’s are non-decreasing, following that lim

t!⌧
✏t = p1.

Remarks. Thm. 1 concludes two sets of factors contribut-
ing to collapse: (i) data-dependent factors: the prior data
distribution (p0), the nature difference between two cate-
gories (|µ0�µ1|); and (ii) algorithm-dependent factors: the
update rate (↵), the FNR at each step (✏t). ✏-GMMC analy-
sis sheds light on explaining model collapse on real datasets
(Sec. 6.3), reasons the existing approaches (Sec. 4.3) and
motivates the development of our baseline (Sec. 5).

4.3. Connection to Existing Solutions
Prior TTA algorithms have already incorporated implicit
mechanisms to mitigate model collapse. We briefly discuss

Under the static data stream assumption
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Figure 2. Diagram of our proposed ✏-perturbed binary Gaussian
Mixture Model Classifier (✏�GMMC), imitating a regular contin-
ual TTA algorithm for theoretical analysis. Two main components
include a predictor for producing pseudo-label Ŷt (Eq. 1), and a
mean teacher update (Eqs. 2, 3). The predictor is perturbed for
retaining a false negative rate of ✏t to simulate undesirable effects
of the testing stream in TTA, making ✏�GMMC prone to collapse.

Pr(Yt = y) and p̂y,t
�
= Pr(Ŷt = y) denote the marginal

distribution of the true label Yt and pseudo label Ŷt.
GMMC and TTA. GMMC first implies an equal prior dis-
tribution by construction which is desirable for the actual
TTA algorithms (e.g., category-balanced sampling strate-
gies in [15, 54]). Thus, it simplifies ft into a maximum
likelihood estimation ft(x) = argmaxy2Y Pr(x|y; ✓t) with
Pr(x|y; ✓t) = N (x; µ̂y,t, �̂

2
y,t). The goal is estimating a

set of parameters ✓t = {µ̂y,t, �̂
2
y,t}y2Y . A perfect classifier

✓0 = {µy,�
2
y}y2Y is initialized at t = 0. For the con-

secutive steps, the simplicity of GMMC allows solving the
Optim (for finding ✓

0
t, Eq. 2) perfectly by computing the

empirical mean and variance of new samples, approximat-
ing EPt . The mean teacher update (Eq. 3) for GMMC is:

µ̂y,t =

(
(1� ↵)µ̂y,t�1 + ↵EPt

h
Xt|Ŷt

i
if Ŷt = y

µ̂y,t�1 otherwise
(4)

The update of �̂
2
y,t is similar. Ŷt = ft�1(Xt) can be

interpreted as a pseudo label (Eq. 1).
✏-GMMC. Severe distribution shifts or low intra-batch cat-
egory diversity of episodic/practical TTA both result in an
increase in the error rate of the predictor. Instead of di-
rectly modeling the dynamic changes of py,t (which can
be complicated depending on the dataset), we conduct our
study on ✏�pertubed GMMC (✏�GMMC), where py,t is
assumed to be static (defined below) and the pseudo-label
predictor of this model is perturbed to simulate undesirable
effects of the testing stream on the predictor.

Two kinds of errors appear in a binary classifier [4]. Let

✏t = Pr{Yt = 1|Ŷt = 0} (5)

be the false negative rate (FNR) of the model at step t. With-
out loss of generality, we study a particular increasing type
II collapse of ✏-GMMC. By flipping the true positive pseudo
labels in simulation, an FNR of ✏t is maintained (Fig. 2).

Assumption 1 (Static Data Stream). The marginal distri-
bution of the true label follows the same Bernoulli distribu-
tion Ber(p0): p0,t = p0, (p1,t = p1 = 1� p0), 8t 2 T .

Lemma 1 (Increasing FNR). Under Assumption 1, a bi-
nary ✏-GMMC would collapsed (Def. 1) with lim

t!⌧
p̂1,t = 0

(or lim
t!⌧

p̂0,t = 1, equivalently) if and only if lim
t!⌧

✏t = p1.

Lemma 1 states the negative correlation between p̂1,t and
✏t. Unsurprisingly, towards the collapsing point where all
predictions are zeros, the FNR also increases at every step
and eventually reaches the highest possible FNR of p1.

Lemma 2 (✏-GMMC After Collapsing). For a binary ✏-
GMMC model, with Assumption 1, if lim

t!⌧
p̂1,t = 0 (collaps-

ing), the cluster 0 in GMMC converges in distribution to a
single-cluster GMMC with parameters:

N (µ̂0,t, �̂
2
0,t)

d.! N (p0µ0 + p1µ1,

p0�
2
0 + p1�

2
1 + p0p1(µ0 � µ1)

2).

Lemma 2 states the resulting ✏�GMMC after collaps-
ing. Cluster 0 now covers the whole data distribution (and
assigning label 0 for all samples). Furthermore, collapsing
happens when µ̂0,t moves toward µ1. We next investigate
the factors and conditions for this undesirable convergence.

Theorem 1 (Convergence of ✏�GMMC). For a binary ✏-
GMMC model, with Assumption 1, let the distance from µ̂0,t

toward µ1 is d0!1
t = |EPt [µ̂0,t]� µ1|, then:

d
0!1
t � d

0!1
t�1  ↵ · p0 ·

✓
|µ0 � µ1|�

d
0!1
t�1

1� ✏t
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From Thm. 1, we observe that the distance d
0!1
t ’s con-

verges (also indicating the convergence to the distribution
in Lemma 2) if d0!1

t < d
0!1
t�1 . The model collapse happens

when this condition holds for a sufficiently long period.

Corollary 1 (A Condition for ✏�GMMC Collapse). With
fixed p0, ↵, µ0, µ1, ✏�GMMC is collapsed if there exists a
sequence of {✏t}⌧⌧��⌧

(⌧ � �⌧ > 0) such that:

p1 � ✏t > 1�
d
0!1
t�1

|µ0 � µ1|
, t 2 [⌧ ��⌧ , ⌧ ].

Corollary 1 introduces a condition ✏-GMMC collapse.
Here, ✏t’s are non-decreasing, following that lim

t!⌧
✏t = p1.

Remarks. Thm. 1 concludes two sets of factors contribut-
ing to collapse: (i) data-dependent factors: the prior data
distribution (p0), the nature difference between two cate-
gories (|µ0�µ1|); and (ii) algorithm-dependent factors: the
update rate (↵), the FNR at each step (✏t). ✏-GMMC analy-
sis sheds light on explaining model collapse on real datasets
(Sec. 6.3), reasons the existing approaches (Sec. 4.3) and
motivates the development of our baseline (Sec. 5).

4.3. Connection to Existing Solutions
Prior TTA algorithms have already incorporated implicit
mechanisms to mitigate model collapse. We briefly discuss

• Why collapsing? 
Increasing the false-negative rate leads to model collapse

Factors contributing to the model collapse: 
(i) Data-dependent factors: the prior data distribution (𝑝!), 

the nature difference between two categories (|𝜇! − 𝜇" |); 
(ii) Algorithm-dependent factors: update rate (𝛼), the false 

negative rate at each step (𝜀#)

We then obtained the following theoretical results: 
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Persistent Test-time Adaptation in Repeating Testing Scenarios
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Figure 2. Diagram of our proposed ✏-perturbed binary Gaussian
Mixture Model Classifier (✏�GMMC), imitating a regular contin-
ual TTA algorithm for theoretical analysis. Two main components
include a predictor for producing pseudo-label Ŷt (Eq. 1), and a
mean teacher update (Eqs. 2, 3). The predictor is perturbed for
retaining a false negative rate of ✏t to simulate undesirable effects
of the testing stream in TTA, making ✏�GMMC prone to collapse.

GMMC and TTA. GMMC first implies an equal prior
distribution by construction which is desirable for the ac-
tual TTA algorithms (e.g., category-balanced sampling
strategies in (Yuan et al., 2023; Gong et al., 2022)).
Thus, it simplifies ft into a maximum likelihood estima-
tion ft(x) = argmaxy2Y Pr(x|y; ✓t) with Pr(x|y; ✓t) =
N (x; µ̂y,t, �̂

2
y,t). The goal is estimating a set of param-

eters ✓t = {µ̂y,t, �̂
2
y,t}y2Y . A perfect classifier ✓0 =

{µy,�
2
y}y2Y is initialized at t = 0. For the consecutive

steps, the simplicity of GMMC allows solving the Optim
(for finding ✓

0
t, Eq. 2) perfectly by computing the empirical

mean and variance of new samples, approximating EPt . The
mean teacher update (Eq. 3) for GMMC is:

µ̂y,t =

(
(1� ↵)µ̂y,t�1 + ↵EPt

h
Xt|Ŷt

i
if Ŷt = y

µ̂y,t�1 otherwise
(4)

The update of �̂2
y,t is similar. Ŷt = ft�1(Xt) can be inter-

preted as a pseudo label (Eq. 1).

✏-GMMC. Severe distribution shifts or low intra-batch cat-
egory diversity of repeating TTA/practical TTA both result
in an increase in the error rate of the predictor. Instead
of directly modeling the dynamic changes of py,t (which
can be complicated depending on the dataset), we study an
✏�pertubed GMMC (✏�GMMC), where py,t is assumed
to be static (defined below) and the pseudo-label predictor
of this model is perturbed to simulate undesirable effects
of the testing stream on the predictor. Two kinds of errors
appear in a binary classifier (Banerjee et al., 2009). Let

✏t = Pr{Yt = 1|Ŷt = 0} (5)

be the false negative rate (FNR) of the model at step t.
Without loss of generality, we study the increasing type II
collapse of ✏-GMMC. By flipping the true positive pseudo
labels in simulation, an FNR of ✏t is maintained (Fig. 2).

Assumption 1 (Static Data Stream). The marginal distri-
bution of the true label follows the same Bernoulli distribu-
tion Ber(p0): p0,t = p0, (p1,t = p1 = 1� p0), 8t 2 T .

Lemma 1 (Increasing FNR). Under Assumption 1, a bi-
nary ✏-GMMC would collapsed (Def. 1) with lim

t!⌧
p̂1,t = 0

(or lim
t!⌧

p̂0,t = 1, equivalently) if and only if lim
t!⌧

✏t = p1.

Lemma 1 states the negative correlation between p̂1,t and
✏t. Unsurprisingly, towards the collapsing point where all
predictions are zeros, the FNR also increases at every step
and eventually reaches the highest possible FNR of p1.

Lemma 2 (✏-GMMC After Collapsing). For a binary
✏-GMMC model, with Assumption 1, if lim

t!⌧
p̂1,t = 0 (col-

lapsing), the cluster 0 in GMMC converges in distribution
to a single-cluster GMMC with parameters:

N (µ̂0,t, �̂
2
0,t)

d.! N (p0µ0 + p1µ1,

p0�
2
0 + p1�

2
1 + p0p1(µ0 � µ1)

2).

Lemma 2 states the resulting ✏�GMMC after collapsing.
Cluster 0 now covers the whole data distribution (and as-
signing label 0 for all samples). Furthermore, collapsing
happens when µ̂0,t moves toward µ1. We next investigate
the factors and conditions for this undesirable convergence.

Theorem 1 (Convergence of ✏�GMMC). For a binary
✏-GMMC model, with Assumption 1, let the distance from
µ̂0,t toward µ1 is d0!1

t = |EPt [µ̂0,t]� µ1|, then:

d
0!1
t � d

0!1
t�1  ↵ · p0 ·

✓
|µ0 � µ1|�

d
0!1
t�1
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.

From Thm. 1, we observe that the distance d
0!1
t ’s con-

verges (also indicating the convergence to the distribution
in Lemma 2) if d0!1

t < d
0!1
t�1 . The model collapse happens

when this condition holds for a sufficiently long period.

Corollary 1 (A Condition for ✏�GMMC Collapse). With
fixed p0, ↵, µ0, µ1, ✏�GMMC is collapsed if there exists a
sequence of {✏t}⌧⌧��⌧

(⌧ � �⌧ > 0) such that:

p1 � ✏t > 1�
d
0!1
t�1

|µ0 � µ1|
, t 2 [⌧ ��⌧ , ⌧ ].

Corollary 1 introduces a condition ✏-GMMC collapse. Here,
✏t’s are non-decreasing, following that lim

t!⌧
✏t = p1.

Remarks. Thm. 1 concludes two sets of factors contribut-
ing to collapse: (i) data-dependent factors: the prior data
distribution (p0), the nature difference between two cate-
gories (|µ0�µ1|); and (ii) algorithm-dependent factors: the
update rate (↵), the FNR at each step (✏t). ✏-GMMC analy-
sis sheds light on explaining model collapse on real datasets
(Sec. 6.3), reasons the existing approaches (Sec. 4.3) and
motivates the development of our baseline (Sec. 5).

4.3. Connection to Existing Solutions

Prior TTA algorithms have already incorporated implicit
mechanisms to mitigate model collapse. We briefly dis-
cuss the rationale behind these effective strategies before
introducing our solution to bolster the resilience of TTA.
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• After collapsing?
Converging to a single-cluster model (instead of 2) 
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Figure 2. Diagram of our proposed ✏-perturbed binary Gaussian
Mixture Model Classifier (✏�GMMC), imitating a regular contin-
ual TTA algorithm for theoretical analysis. Two main components
include a predictor for producing pseudo-label Ŷt (Eq. 1), and a
mean teacher update (Eqs. 2, 3). The predictor is perturbed for
retaining a false negative rate of ✏t to simulate undesirable effects
of the testing stream in TTA, making ✏�GMMC prone to collapse.

Pr(Yt = y) and p̂y,t
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= Pr(Ŷt = y) denote the marginal

distribution of the true label Yt and pseudo label Ŷt.
GMMC and TTA. GMMC first implies an equal prior dis-
tribution by construction which is desirable for the actual
TTA algorithms (e.g., category-balanced sampling strate-
gies in [15, 54]). Thus, it simplifies ft into a maximum
likelihood estimation ft(x) = argmaxy2Y Pr(x|y; ✓t) with
Pr(x|y; ✓t) = N (x; µ̂y,t, �̂
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y,t). The goal is estimating a

set of parameters ✓t = {µ̂y,t, �̂
2
y,t}y2Y . A perfect classifier

✓0 = {µy,�
2
y}y2Y is initialized at t = 0. For the con-

secutive steps, the simplicity of GMMC allows solving the
Optim (for finding ✓

0
t, Eq. 2) perfectly by computing the

empirical mean and variance of new samples, approximat-
ing EPt . The mean teacher update (Eq. 3) for GMMC is:

µ̂y,t =

(
(1� ↵)µ̂y,t�1 + ↵EPt

h
Xt|Ŷt

i
if Ŷt = y

µ̂y,t�1 otherwise
(4)

The update of �̂
2
y,t is similar. Ŷt = ft�1(Xt) can be

interpreted as a pseudo label (Eq. 1).
✏-GMMC. Severe distribution shifts or low intra-batch cat-
egory diversity of episodic/practical TTA both result in an
increase in the error rate of the predictor. Instead of di-
rectly modeling the dynamic changes of py,t (which can
be complicated depending on the dataset), we conduct our
study on ✏�pertubed GMMC (✏�GMMC), where py,t is
assumed to be static (defined below) and the pseudo-label
predictor of this model is perturbed to simulate undesirable
effects of the testing stream on the predictor.

Two kinds of errors appear in a binary classifier [4]. Let

✏t = Pr{Yt = 1|Ŷt = 0} (5)

be the false negative rate (FNR) of the model at step t. With-
out loss of generality, we study a particular increasing type
II collapse of ✏-GMMC. By flipping the true positive pseudo
labels in simulation, an FNR of ✏t is maintained (Fig. 2).

Assumption 1 (Static Data Stream). The marginal distri-
bution of the true label follows the same Bernoulli distribu-
tion Ber(p0): p0,t = p0, (p1,t = p1 = 1� p0), 8t 2 T .

Lemma 1 (Increasing FNR). Under Assumption 1, a bi-
nary ✏-GMMC would collapsed (Def. 1) with lim

t!⌧
p̂1,t = 0

(or lim
t!⌧

p̂0,t = 1, equivalently) if and only if lim
t!⌧

✏t = p1.

Lemma 1 states the negative correlation between p̂1,t and
✏t. Unsurprisingly, towards the collapsing point where all
predictions are zeros, the FNR also increases at every step
and eventually reaches the highest possible FNR of p1.

Lemma 2 (✏-GMMC After Collapsing). For a binary ✏-
GMMC model, with Assumption 1, if lim

t!⌧
p̂1,t = 0 (collaps-

ing), the cluster 0 in GMMC converges in distribution to a
single-cluster GMMC with parameters:

N (µ̂0,t, �̂
2
0,t)

d.! N (p0µ0 + p1µ1,

p0�
2
0 + p1�

2
1 + p0p1(µ0 � µ1)

2).

Lemma 2 states the resulting ✏�GMMC after collaps-
ing. Cluster 0 now covers the whole data distribution (and
assigning label 0 for all samples). Furthermore, collapsing
happens when µ̂0,t moves toward µ1. We next investigate
the factors and conditions for this undesirable convergence.

Theorem 1 (Convergence of ✏�GMMC). For a binary ✏-
GMMC model, with Assumption 1, let the distance from µ̂0,t

toward µ1 is d0!1
t = |EPt [µ̂0,t]� µ1|, then:

d
0!1
t � d

0!1
t�1  ↵ · p0 ·

✓
|µ0 � µ1|�

d
0!1
t�1

1� ✏t

◆
.

From Thm. 1, we observe that the distance d
0!1
t ’s con-

verges (also indicating the convergence to the distribution
in Lemma 2) if d0!1

t < d
0!1
t�1 . The model collapse happens

when this condition holds for a sufficiently long period.

Corollary 1 (A Condition for ✏�GMMC Collapse). With
fixed p0, ↵, µ0, µ1, ✏�GMMC is collapsed if there exists a
sequence of {✏t}⌧⌧��⌧

(⌧ � �⌧ > 0) such that:

p1 � ✏t > 1�
d
0!1
t�1

|µ0 � µ1|
, t 2 [⌧ ��⌧ , ⌧ ].

Corollary 1 introduces a condition ✏-GMMC collapse.
Here, ✏t’s are non-decreasing, following that lim

t!⌧
✏t = p1.

Remarks. Thm. 1 concludes two sets of factors contribut-
ing to collapse: (i) data-dependent factors: the prior data
distribution (p0), the nature difference between two cate-
gories (|µ0�µ1|); and (ii) algorithm-dependent factors: the
update rate (↵), the FNR at each step (✏t). ✏-GMMC analy-
sis sheds light on explaining model collapse on real datasets
(Sec. 6.3), reasons the existing approaches (Sec. 4.3) and
motivates the development of our baseline (Sec. 5).

4.3. Connection to Existing Solutions
Prior TTA algorithms have already incorporated implicit
mechanisms to mitigate model collapse. We briefly discuss

Pseudo-label Predictor
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y2Y
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Figure 2. Diagram of our proposed ✏-perturbed binary Gaussian
Mixture Model Classifier (✏�GMMC), imitating a regular contin-
ual TTA algorithm for theoretical analysis. Two main components
include a predictor for producing pseudo-label Ŷt (Eq. 1), and a
mean teacher update (Eqs. 2, 3). The predictor is perturbed for
retaining a false negative rate of ✏t to simulate undesirable effects
of the testing stream in TTA, making ✏�GMMC prone to collapse.

Pr(Yt = y) and p̂y,t
�
= Pr(Ŷt = y) denote the marginal

distribution of the true label Yt and pseudo label Ŷt.
GMMC and TTA. GMMC first implies an equal prior dis-
tribution by construction which is desirable for the actual
TTA algorithms (e.g., category-balanced sampling strate-
gies in [15, 54]). Thus, it simplifies ft into a maximum
likelihood estimation ft(x) = argmaxy2Y Pr(x|y; ✓t) with
Pr(x|y; ✓t) = N (x; µ̂y,t, �̂

2
y,t). The goal is estimating a

set of parameters ✓t = {µ̂y,t, �̂
2
y,t}y2Y . A perfect classifier

✓0 = {µy,�
2
y}y2Y is initialized at t = 0. For the con-

secutive steps, the simplicity of GMMC allows solving the
Optim (for finding ✓

0
t, Eq. 2) perfectly by computing the

empirical mean and variance of new samples, approximat-
ing EPt . The mean teacher update (Eq. 3) for GMMC is:

µ̂y,t =

(
(1� ↵)µ̂y,t�1 + ↵EPt

h
Xt|Ŷt

i
if Ŷt = y

µ̂y,t�1 otherwise
(4)

The update of �̂
2
y,t is similar. Ŷt = ft�1(Xt) can be

interpreted as a pseudo label (Eq. 1).
✏-GMMC. Severe distribution shifts or low intra-batch cat-
egory diversity of episodic/practical TTA both result in an
increase in the error rate of the predictor. Instead of di-
rectly modeling the dynamic changes of py,t (which can
be complicated depending on the dataset), we conduct our
study on ✏�pertubed GMMC (✏�GMMC), where py,t is
assumed to be static (defined below) and the pseudo-label
predictor of this model is perturbed to simulate undesirable
effects of the testing stream on the predictor.

Two kinds of errors appear in a binary classifier [4]. Let

✏t = Pr{Yt = 1|Ŷt = 0} (5)

be the false negative rate (FNR) of the model at step t. With-
out loss of generality, we study a particular increasing type
II collapse of ✏-GMMC. By flipping the true positive pseudo
labels in simulation, an FNR of ✏t is maintained (Fig. 2).

Assumption 1 (Static Data Stream). The marginal distri-
bution of the true label follows the same Bernoulli distribu-
tion Ber(p0): p0,t = p0, (p1,t = p1 = 1� p0), 8t 2 T .

Lemma 1 (Increasing FNR). Under Assumption 1, a bi-
nary ✏-GMMC would collapsed (Def. 1) with lim

t!⌧
p̂1,t = 0

(or lim
t!⌧

p̂0,t = 1, equivalently) if and only if lim
t!⌧

✏t = p1.

Lemma 1 states the negative correlation between p̂1,t and
✏t. Unsurprisingly, towards the collapsing point where all
predictions are zeros, the FNR also increases at every step
and eventually reaches the highest possible FNR of p1.

Lemma 2 (✏-GMMC After Collapsing). For a binary ✏-
GMMC model, with Assumption 1, if lim

t!⌧
p̂1,t = 0 (collaps-

ing), the cluster 0 in GMMC converges in distribution to a
single-cluster GMMC with parameters:

N (µ̂0,t, �̂
2
0,t)

d.! N (p0µ0 + p1µ1,

p0�
2
0 + p1�

2
1 + p0p1(µ0 � µ1)

2).

Lemma 2 states the resulting ✏�GMMC after collaps-
ing. Cluster 0 now covers the whole data distribution (and
assigning label 0 for all samples). Furthermore, collapsing
happens when µ̂0,t moves toward µ1. We next investigate
the factors and conditions for this undesirable convergence.

Theorem 1 (Convergence of ✏�GMMC). For a binary ✏-
GMMC model, with Assumption 1, let the distance from µ̂0,t

toward µ1 is d0!1
t = |EPt [µ̂0,t]� µ1|, then:

d
0!1
t � d

0!1
t�1  ↵ · p0 ·

✓
|µ0 � µ1|�

d
0!1
t�1

1� ✏t

◆
.

From Thm. 1, we observe that the distance d
0!1
t ’s con-

verges (also indicating the convergence to the distribution
in Lemma 2) if d0!1

t < d
0!1
t�1 . The model collapse happens

when this condition holds for a sufficiently long period.

Corollary 1 (A Condition for ✏�GMMC Collapse). With
fixed p0, ↵, µ0, µ1, ✏�GMMC is collapsed if there exists a
sequence of {✏t}⌧⌧��⌧

(⌧ � �⌧ > 0) such that:

p1 � ✏t > 1�
d
0!1
t�1

|µ0 � µ1|
, t 2 [⌧ ��⌧ , ⌧ ].

Corollary 1 introduces a condition ✏-GMMC collapse.
Here, ✏t’s are non-decreasing, following that lim

t!⌧
✏t = p1.

Remarks. Thm. 1 concludes two sets of factors contribut-
ing to collapse: (i) data-dependent factors: the prior data
distribution (p0), the nature difference between two cate-
gories (|µ0�µ1|); and (ii) algorithm-dependent factors: the
update rate (↵), the FNR at each step (✏t). ✏-GMMC analy-
sis sheds light on explaining model collapse on real datasets
(Sec. 6.3), reasons the existing approaches (Sec. 4.3) and
motivates the development of our baseline (Sec. 5).

4.3. Connection to Existing Solutions
Prior TTA algorithms have already incorporated implicit
mechanisms to mitigate model collapse. We briefly discuss

• How? Conditions and factors that contribute to the model collapse
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Simulation Results: Collapsing Behavior of 𝜀-GMMC 
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Figure 3. Simulation result on ✏-perturbed Gaussian Mixture Model Classifier (✏-GMMC) and GMMC (perturbed-free). (a) Histogram
of model predictions through time. A similar prediction frequency pattern is observed on CIFAR-10-C (Fig. 4a-top). (b) The probability
density function of the two clusters after convergence versus the true data distribution. The initial two clusters of ✏-GMMC collapsed into
a single cluster with parameters stated in Lemma 2. In the perturbed-free, GMMC converges to the true data distribution. (c) Distance
toward µ1 (|EPt [µ̂0,t]� µ1|) and false-negative rate (✏t) in simulation coincides with the result in Thm. 1 (with ✏t following Corollary 1).
Table 1. Average classification error of the task CIFAR-10 ! CIFAR-10-C in episodic TTA setting. For all tables in the remaining of this
paper, the lowest classification error is highlighted in bold, superscript (*) denotes the result reported in [54].

Episodic TTA visit �������������������������!
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

Source 43.5 43.5

LAME [7](⇤) 31.1 31.1

CoTTA [52] 82.2 85.6 87.2 87.8 88.2 88.5 88.7 88.7 88.9 88.9 88.9 89.2 89.2 89.2 89.1 89.2 89.2 89.1 89.3 89.3 88.3
MECTA [20] 72.2 82.0 85.2 86.3 87.0 87.3 87.3 87.5 88.1 88.8 88.9 88.9 88.6 89.1 88.7 88.8 88.5 88.6 88.3 88.8 86.9

RMT [12] 77.5 76.9 76.5 75.8 75.5 75.5 75.4 75.4 75.5 75.3 75.5 75.6 75.5 75.5 75.7 75.6 75.7 75.6 75.7 75.8 75.8
RoTTA [54] 24.6 25.5 29.6 33.6 38.2 42.8 46.2 50.6 52.2 54.1 56.5 57.5 59.4 60.2 61.7 63.0 64.8 66.1 68.2 70.3 51.3

PeTTA (ours) 23.7 23.1 22.8 22.6 23.0 22.6 22.8 22.7 23.2 23.1 23.2 23.1 22.9 23.1 22.8 22.8 22.7 22.9 23.5 23.6 23.0

Table 2. Average classification error of the task CIFAR-100 ! CIFAR-100-C in episodic TTA setting.

Episodic TTA visit �������������������������!
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

Source 46.5 46.5

LAME [7](⇤) 40.5 40.5

CoTTA [52] 53.4 58.4 63.4 67.6 71.4 74.9 78.2 81.1 84.0 86.7 88.8 90.7 92.3 93.5 94.7 95.6 96.3 97.0 97.3 97.6 83.1
MECTA [20] 44.8 44.3 44.6 43.1 44.8 44.2 44.4 43.8 43.8 43.9 44.6 43.8 44.4 44.6 43.9 44.2 43.8 44.4 44.9 44.2 44.2

RMT [12] 50.5 48.6 47.9 47.4 47.3 47.1 46.9 46.9 46.6 46.8 46.7 46.5 46.5 46.6 46.5 46.5 46.5 46.5 46.5 46.5 47.1
RoTTA [54] 37.8 39.5 45.2 52.1 60.1 72.9 82.6 87.8 91.4 94.1 95.5 96.0 96.6 97.0 97.4 97.8 97.9 98.1 98.3 98.3 81.8

PeTTA (ours) 37.4 35.2 35.1 34.9 35.1 35.0 35.1 34.9 35.1 35.0 35.1 35.1 35.0 35.0 35.3 35.2 35.2 35.1 35.3 35.1 35.2

Table 3. Average classification error of the task real ! clipart ! painting ! sketch on DomainNet dataset in episodic TTA setting.

Episodic TTA visit �������������������������!
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

Source 45.3 45.3

LAME [7] 45.6 45.6

CoTTA [52] 96.2 97.1 97.4 97.8 98.1 98.2 98.4 98.4 98.4 98.5 98.6 98.6 98.6 98.6 98.6 98.7 98.7 98.7 98.7 98.7 98.3
MECTA [20] 94.6 98.4 98.6 98.8 99.1 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 98.7

RMT [12] 76.2 77.1 77.3 77.3 77.2 77.1 76.8 76.9 76.5 76.4 76.4 76.3 76.4 76.2 76.2 76.1 76.4 76.1 76.0 75.8 76.5
RoTTA [54] 44.3 43.8 44.7 46.7 48.7 50.8 52.7 55.0 57.1 59.7 62.7 65.1 68.0 70.3 72.7 75.2 77.2 79.6 82.6 85.3 62.1

PeTTA (ours) 43.9 42.6 42.0 42.0 42.2 42.3 42.4 42.5 42.2 42.3 42.5 42.5 42.4 42.6 42.5 42.8 42.5 42.3 42.5 42.5 42.5

To see this, Fig. 4c-left simplifies the confusion matrix by
only visualizing the top prone-to-misclassified pair of cat-
egories. In this case, label deer is used for almost every
living animal while airplane represents transport vehicles.
The similarity between categories in the feature space of
the source model (Fig. 4c-right) is correlated with the like-
lihood of being merged upon collapsing. As distance in fea-
ture space is analogous to |µ0�µ1| (in Thm. 1), closer clus-

ters are at a higher risk of collapsing. This reasons why two
dominant categories are formed, and showcases the result-
ing collapsed TTA model is predictable up to some extent.

6.4. Ablation Study
Effect of Each Component. Tab. 4 gives an ablation study
on PeTTA. It is important to highlight that adding a reg-
ularization term alone with a fixed choice of �,↵ not only
fails to mitigate the phenomenon of model collapse but may
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Figure 3. Simulation result on ✏-perturbed Gaussian Mixture Model Classifier (✏-GMMC) and GMMC (perturbed-free). (a) Histogram
of model predictions through time. A similar prediction frequency pattern is observed on CIFAR-10-C (Fig. 4a-top). (b) The probability
density function of the two clusters after convergence versus the true data distribution. The initial two clusters of ✏-GMMC collapsed into
a single cluster with parameters stated in Lemma 2. In the perturbed-free, GMMC converges to the true data distribution. (c) Distance
toward µ1 (|EPt [µ̂0,t]� µ1|) and false-negative rate (✏t) in simulation coincides with the result in Thm. 1 (with ✏t following Corollary 1).
Table 1. Average classification error of the task CIFAR-10 ! CIFAR-10-C in episodic TTA setting. For all tables in the remaining of this
paper, the lowest classification error is highlighted in bold, superscript (*) denotes the result reported in [54].

Episodic TTA visit �������������������������!
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

Source 43.5 43.5

LAME [7](⇤) 31.1 31.1

CoTTA [52] 82.2 85.6 87.2 87.8 88.2 88.5 88.7 88.7 88.9 88.9 88.9 89.2 89.2 89.2 89.1 89.2 89.2 89.1 89.3 89.3 88.3
MECTA [20] 72.2 82.0 85.2 86.3 87.0 87.3 87.3 87.5 88.1 88.8 88.9 88.9 88.6 89.1 88.7 88.8 88.5 88.6 88.3 88.8 86.9

RMT [12] 77.5 76.9 76.5 75.8 75.5 75.5 75.4 75.4 75.5 75.3 75.5 75.6 75.5 75.5 75.7 75.6 75.7 75.6 75.7 75.8 75.8
RoTTA [54] 24.6 25.5 29.6 33.6 38.2 42.8 46.2 50.6 52.2 54.1 56.5 57.5 59.4 60.2 61.7 63.0 64.8 66.1 68.2 70.3 51.3

PeTTA (ours) 23.7 23.1 22.8 22.6 23.0 22.6 22.8 22.7 23.2 23.1 23.2 23.1 22.9 23.1 22.8 22.8 22.7 22.9 23.5 23.6 23.0

Table 2. Average classification error of the task CIFAR-100 ! CIFAR-100-C in episodic TTA setting.

Episodic TTA visit �������������������������!
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

Source 46.5 46.5

LAME [7](⇤) 40.5 40.5

CoTTA [52] 53.4 58.4 63.4 67.6 71.4 74.9 78.2 81.1 84.0 86.7 88.8 90.7 92.3 93.5 94.7 95.6 96.3 97.0 97.3 97.6 83.1
MECTA [20] 44.8 44.3 44.6 43.1 44.8 44.2 44.4 43.8 43.8 43.9 44.6 43.8 44.4 44.6 43.9 44.2 43.8 44.4 44.9 44.2 44.2

RMT [12] 50.5 48.6 47.9 47.4 47.3 47.1 46.9 46.9 46.6 46.8 46.7 46.5 46.5 46.6 46.5 46.5 46.5 46.5 46.5 46.5 47.1
RoTTA [54] 37.8 39.5 45.2 52.1 60.1 72.9 82.6 87.8 91.4 94.1 95.5 96.0 96.6 97.0 97.4 97.8 97.9 98.1 98.3 98.3 81.8

PeTTA (ours) 37.4 35.2 35.1 34.9 35.1 35.0 35.1 34.9 35.1 35.0 35.1 35.1 35.0 35.0 35.3 35.2 35.2 35.1 35.3 35.1 35.2

Table 3. Average classification error of the task real ! clipart ! painting ! sketch on DomainNet dataset in episodic TTA setting.

Episodic TTA visit �������������������������!
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

Source 45.3 45.3

LAME [7] 45.6 45.6

CoTTA [52] 96.2 97.1 97.4 97.8 98.1 98.2 98.4 98.4 98.4 98.5 98.6 98.6 98.6 98.6 98.6 98.7 98.7 98.7 98.7 98.7 98.3
MECTA [20] 94.6 98.4 98.6 98.8 99.1 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 98.7

RMT [12] 76.2 77.1 77.3 77.3 77.2 77.1 76.8 76.9 76.5 76.4 76.4 76.3 76.4 76.2 76.2 76.1 76.4 76.1 76.0 75.8 76.5
RoTTA [54] 44.3 43.8 44.7 46.7 48.7 50.8 52.7 55.0 57.1 59.7 62.7 65.1 68.0 70.3 72.7 75.2 77.2 79.6 82.6 85.3 62.1

PeTTA (ours) 43.9 42.6 42.0 42.0 42.2 42.3 42.4 42.5 42.2 42.3 42.5 42.5 42.4 42.6 42.5 42.8 42.5 42.3 42.5 42.5 42.5

To see this, Fig. 4c-left simplifies the confusion matrix by
only visualizing the top prone-to-misclassified pair of cat-
egories. In this case, label deer is used for almost every
living animal while airplane represents transport vehicles.
The similarity between categories in the feature space of
the source model (Fig. 4c-right) is correlated with the like-
lihood of being merged upon collapsing. As distance in fea-
ture space is analogous to |µ0�µ1| (in Thm. 1), closer clus-

ters are at a higher risk of collapsing. This reasons why two
dominant categories are formed, and showcases the result-
ing collapsed TTA model is predictable up to some extent.

6.4. Ablation Study
Effect of Each Component. Tab. 4 gives an ablation study
on PeTTA. It is important to highlight that adding a reg-
ularization term alone with a fixed choice of �,↵ not only
fails to mitigate the phenomenon of model collapse but may

Numerical 
simulation on a 
two-Gaussian 
models aligns 
with the 
theoretical 
analysis result

Collapsing Trajectory of 𝜺-GMMC

𝜀-GMMC 
collapsed 
into a single 
cluster 
model 
(predicting 
all zeros)

We perform a numerical simulation to 
empirically validate the theoretical analysis

𝜖 -GMMC simulates a similar collapsing 
pattern observed on RoTTA/CIFAR-10-C 
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Figure 4. Repeating TTA (20 visits) on CIFAR!CIFAR10-C task. (a) Histogram of model predictions (labels are color-coded). PeTTA
achieves a persisting performance while RoTTA (Yuan et al., 2023) degrades. (b) Confusion matrix at the last visit, RoTTA classifies all
samples into a few categories (e.g., 0: airplane, 4: deer). (c) Force-directed graph showing (left) the most prone to misclassification
pairs (arrows indicating the portion and pointing from the true to the misclassified category); (right) similar categories tend to be easily
collapsed. Edges denote the average cosine similarity of feature vectors (source model), only the highest similar pairs are shown.

Table 4. Average (across 20 visits) classification error of multiple
variations of PeTTA: without (w/o) regularization term R(✓), fixed
regularization coefficient �; adaptive coefficient �t with adaptive
update rate ↵t, and alignment loss LAL. To maintain TTA persis-
tence, fully utilizing all components is suggested.

Method CIFAR-10-C CIFAR-100-C DomainNet
Baseline w/o R(✓) 42.6 63.0 77.9
R(✓) fixed � = 0.1�0 43.3 65.0 80.0
R(✓) fixed � = �0 42.0 64.6 66.6
PeTTA - �t 27.1 55.0 59.7
PeTTA - �t + ↵t 23.9 41.4 44.5
PeTTA - �t + LAL 26.2 36.3 43.2
PeTTA - �t + ↵t + LAL 23.0 35.2 42.5

Table 5. Average (across 20 visits) classification error of PeTTA.
PeTTA favors various choices of regularizers R(✓): L2 and cosine
similarity in conjunction with Fisher coefficient.

Method CIFAR-10-C CIFAR-100-C DomainNetRegularizer Fisher

L2 7 23.0 35.6 43.1
3 22.7 36.0 43.9

Cosine 7 23.0 35.2 42.5
3 22.6 35.9 43.3

6.4. Ablation Study
Effect of Each Component. Tab. 4 gives an ablation study
on PeTTA. It is important to highlight that adding a regu-
larization term alone with a fixed choice of �,↵ not only
fails to mitigate the phenomenon of model collapse but may
also introduce a negative effect (rows 1-3). Within PeTTA,
adopting the adaptive �t scheme alone (row 4) or in conjunc-
tion with either ↵t or anchor loss LAL (rows 5-6) partially
stabilizes the performance. Under the drastic domain shifts
with a larger size of categories or model parameters (e.g.,
in DomainNet, CIFAR-100-C experiments), restricting ↵t

adjustment limits the ability of PeTTA to stop undesirable
updates while a common regularization term without LAL

is insufficient to guide the adaptation. Thus, leveraging all
elements secures the persistence of PeTTA (row 7).

Various Choices of Regularizers. The design of PeTTA is
not coupled with any specific regularization term. Demon-
strated in Tab. 5, PeTTA works well for the two common
choices: L2 and cosine similarity. We also investigate the
conjunction use of Fisher coefficent (Kirkpatrick et al., 2017;
Niu et al., 2022) for weighting the model parameter impor-
tance. While the benefit (in terms of improving accuracy)
varies across datasets, PeTTA accommodates all choices.

7. Discussion and Conclusion
On a Potential Risk of TTA in Practice. We provide
empirical and theoretical evidence on the risk of deploying
continual TTA algorithms. Existing studies fail to detect
this issue with a single pass per test set. The repeating
TTA could be conveniently adopted as a straightforward
evaluation, where its challenging test stream magnifies the
error accumulation that a model might encounter in practice.

Limitations and Future Work. PeTTA baseline takes one
step toward mitigating the gradual performance degradation
of TTA. Nevertheless, it is important to note that a complete
elimination of error accumulation cannot be guaranteed rig-
orously through regularization. Future research could delve
deeper into expanding our efforts to develop an algorithm
that achieves error accumulation-free by construction.

Conclusion. Towards trustworthy and reliable TTA appli-
cations, we rigorously study the performance degradation
problem of TTA. The proposed repeating TTA setting high-
lights the limitations of modern TTA methods, which strug-
gle to prevent the error accumulation when continuously
adapting to demanding test streams. Theoretically inspect-
ing a failure case of ✏�GMMC paves the road for designing
PeTTA- a simple yet efficient solution that continuously
assesses the model divergence for harmonizing the TTA
process, balancing adaptation, and collapse prevention.
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Figure 3. Simulation result on ✏-perturbed Gaussian Mixture Model Classifier (✏-GMMC) and GMMC (perturbed-free). (a) Histogram
of model predictions through time. A similar prediction frequency pattern is observed on CIFAR-10-C (Fig. 4a-top). (b) The probability
density function of the two clusters after convergence versus the true data distribution. The initial two clusters of ✏-GMMC collapsed into
a single cluster with parameters stated in Lemma 2. In the perturbed-free, GMMC converges to the true data distribution. (c) Distance
toward µ1 (|EPt [µ̂0,t]� µ1|) and false-negative rate (✏t) in simulation coincides with the result in Thm. 1 (with ✏t following Corollary 1).
Table 1. Average classification error of the task CIFAR-10 ! CIFAR-10-C in episodic TTA setting. For all tables in the remaining of this
paper, the lowest classification error is highlighted in bold, superscript (*) denotes the result reported in [54].

Episodic TTA visit �������������������������!
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

Source 43.5 43.5

LAME [7](⇤) 31.1 31.1

CoTTA [52] 82.2 85.6 87.2 87.8 88.2 88.5 88.7 88.7 88.9 88.9 88.9 89.2 89.2 89.2 89.1 89.2 89.2 89.1 89.3 89.3 88.3
MECTA [20] 72.2 82.0 85.2 86.3 87.0 87.3 87.3 87.5 88.1 88.8 88.9 88.9 88.6 89.1 88.7 88.8 88.5 88.6 88.3 88.8 86.9

RMT [12] 77.5 76.9 76.5 75.8 75.5 75.5 75.4 75.4 75.5 75.3 75.5 75.6 75.5 75.5 75.7 75.6 75.7 75.6 75.7 75.8 75.8
RoTTA [54] 24.6 25.5 29.6 33.6 38.2 42.8 46.2 50.6 52.2 54.1 56.5 57.5 59.4 60.2 61.7 63.0 64.8 66.1 68.2 70.3 51.3

PeTTA (ours) 23.7 23.1 22.8 22.6 23.0 22.6 22.8 22.7 23.2 23.1 23.2 23.1 22.9 23.1 22.8 22.8 22.7 22.9 23.5 23.6 23.0

Table 2. Average classification error of the task CIFAR-100 ! CIFAR-100-C in episodic TTA setting.

Episodic TTA visit �������������������������!
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

Source 46.5 46.5

LAME [7](⇤) 40.5 40.5

CoTTA [52] 53.4 58.4 63.4 67.6 71.4 74.9 78.2 81.1 84.0 86.7 88.8 90.7 92.3 93.5 94.7 95.6 96.3 97.0 97.3 97.6 83.1
MECTA [20] 44.8 44.3 44.6 43.1 44.8 44.2 44.4 43.8 43.8 43.9 44.6 43.8 44.4 44.6 43.9 44.2 43.8 44.4 44.9 44.2 44.2

RMT [12] 50.5 48.6 47.9 47.4 47.3 47.1 46.9 46.9 46.6 46.8 46.7 46.5 46.5 46.6 46.5 46.5 46.5 46.5 46.5 46.5 47.1
RoTTA [54] 37.8 39.5 45.2 52.1 60.1 72.9 82.6 87.8 91.4 94.1 95.5 96.0 96.6 97.0 97.4 97.8 97.9 98.1 98.3 98.3 81.8

PeTTA (ours) 37.4 35.2 35.1 34.9 35.1 35.0 35.1 34.9 35.1 35.0 35.1 35.1 35.0 35.0 35.3 35.2 35.2 35.1 35.3 35.1 35.2

Table 3. Average classification error of the task real ! clipart ! painting ! sketch on DomainNet dataset in episodic TTA setting.

Episodic TTA visit �������������������������!
Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Avg

Source 45.3 45.3

LAME [7] 45.6 45.6

CoTTA [52] 96.2 97.1 97.4 97.8 98.1 98.2 98.4 98.4 98.4 98.5 98.6 98.6 98.6 98.6 98.6 98.7 98.7 98.7 98.7 98.7 98.3
MECTA [20] 94.6 98.4 98.6 98.8 99.1 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 99.0 98.7

RMT [12] 76.2 77.1 77.3 77.3 77.2 77.1 76.8 76.9 76.5 76.4 76.4 76.3 76.4 76.2 76.2 76.1 76.4 76.1 76.0 75.8 76.5
RoTTA [54] 44.3 43.8 44.7 46.7 48.7 50.8 52.7 55.0 57.1 59.7 62.7 65.1 68.0 70.3 72.7 75.2 77.2 79.6 82.6 85.3 62.1

PeTTA (ours) 43.9 42.6 42.0 42.0 42.2 42.3 42.4 42.5 42.2 42.3 42.5 42.5 42.4 42.6 42.5 42.8 42.5 42.3 42.5 42.5 42.5

To see this, Fig. 4c-left simplifies the confusion matrix by
only visualizing the top prone-to-misclassified pair of cat-
egories. In this case, label deer is used for almost every
living animal while airplane represents transport vehicles.
The similarity between categories in the feature space of
the source model (Fig. 4c-right) is correlated with the like-
lihood of being merged upon collapsing. As distance in fea-
ture space is analogous to |µ0�µ1| (in Thm. 1), closer clus-

ters are at a higher risk of collapsing. This reasons why two
dominant categories are formed, and showcases the result-
ing collapsed TTA model is predictable up to some extent.

6.4. Ablation Study
Effect of Each Component. Tab. 4 gives an ablation study
on PeTTA. It is important to highlight that adding a reg-
ularization term alone with a fixed choice of �,↵ not only
fails to mitigate the phenomenon of model collapse but may

Histogram of Predictions

On real dataset1 Simulation

GMMC model 
without  the 
noisy pseudo 
labels 
converges to 
the true 
distributions

1 Each column on these plots shows the histogram of model prediction (class labels are color-coded). CIFAR-10-C has an 
equal number of images for 10 classes. Hence, predictions from an ideal model should follow a uniform distribution.
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To sum up, the teacher model update of PeTTA is an elabo-
rated version of EMA with �t,↵t (Eq. 7) and LAL (Eq. 8):

✓0t = Optim

✓02⇥
EPt

h
LCLS

⇣
Ŷt, Xt; ✓

0
⌘
+ LAL

�
Xt; ✓

0�i+ �tR(✓0)

✓t = (1� ↵t)✓t�1 + ↵t✓
0
t.

6. Experimental Results
6.1. ✏�GMMC Simmulation Result
Setup. A total of 6000 samples from two Gaussian dis-
tributions: N (µ0 = 0,�2

0 = 1) and N (µ1 = 2,�2
1 = 1)

with p0 = p1 = 1
2 are synthesized and gradually released

in a batch of B = 10 samples. For evaluation, an indepen-
dent set of 2000 samples following the same distribution is
used for computing the prediction frequency, and the false
negative rate (FNR). ✏�GMMC update follows Eq. 4 with
↵ = 5e�2. To simulate model collapse, the predictor is in-
tercepted and 10% of the true-postive pseudo labels at each
testing step are randomly flipped (Corollary 1).
Simulation Result. In action, both the likelihood of pre-
dicting class 0 (Fig. 3a-top) and the ✏t (Eq. 5) (Fig. 3c-
right, solid line) gradually increases over time as expected
(Lemma 1). After collapsing, ✏-GMMC merges the two
initial clusters, resulting in a single one (Fig. 3b-left)
with parameters that match Lemma 2. The distance from
µ̂0,t (initialized at µ0) towards µ1 converges (Fig. 3c-left,
solid line), coincided with the analysis in Thm. 1 when
✏t is chosen following Corollary 1 (Fig. 3c, dashed line).
GMMC (perturbed-free) stably produces accurate predic-
tions (Fig. 3a-bottom) and approximates the true data distri-
bution (Fig. 3b-right). The simulation empirically validates
our analysis (Sec. 4.2), confirming the vulnerability of TTA
models when the pseudo labels are inaccurately estimated.

6.2. Setup - Benchmark Datasets
Datasets. We benchmark the performance on common TTA
classification tasks: CIFAR10 ! CIFAR10-C, CIFAR100
! CIFAR100-C [18]. In CIFAR-10-C/CIFAR-100-C, 15
types of common image corruptions are applied. The most
severe corruption level is used. Beyond regular image cor-
ruptions, we consider DomainNet dataset [39] with 126 cat-
egories in four domains (real, sketch, painting, clipart). The
average classification error across all scenarios is reported.
Compared Methods. Besides our PeTTA method, the fol-
lowing continual TTA, source-free approaches are studied:
RoTTA [54], RMT [12], CoTTA [52], MECTA [20]. Note-
worthy, only RoTTA [54] is specifically designed for the
practical TTA setting while the construction of other meth-
ods only fits the purpose of continual TTA in general. A
parameter-free TTA approach: LAME [7] is also included.
Episodic TTA. Following the practical TTA setup [54],
multiple testing scenarios from each testing set will grad-
ually change from one to another while the Dirichlet distri-
bution Dir(0.1) for CIFAR10-C and DomainNet, Dir(0.01)

for CIFAR100-C) generates category temporally correlated
batches of data. For all experiments, we set the number of
revisits K = 20 (times) as this number is sufficient to fully
observe the gradual degradation on existing TTA baselines.
Implementation Details. All experiments are implemented
in PyTorch [38]. RobustBench [10] provides pre-trained
models on the source distribution. Hyper-parameter choices
are kept as close as possible to the original selections of au-
thors. Unless otherwise noted, for all PeTTA experiments,
the EMA update rate for robust batch normalization [54]
and feature embedding statistics is set to 5e�2; ↵0 = 1e�3

and cosine similarity regularizer is used. On CIFAR10-
C/CIFAR100-C we use symmetry cross-entropy loss [12]
and �0 = 10 while the regular cross-entropy loss [13] and
�0 = 1 (severe domain shift requires prioritizing adaptabil-
ity) are applied in DomainNet experiments.
6.3. Result - Benchmark Datasets
Episodic TTA Performance. Fig. 1-bottom presents
the testing error on CIFAR-10-C in episodic TTA setting.
RoTTA [54] exhibits promising performance in the first sev-
eral visits but soon raises and eventually exceeds the source
model (no TTA). The classification error of baseline meth-
ods on CIFAR-10!CIFAR-10-C, CIFAR-100!CIFAR-
100-C, and real ! clipart, painting, sketch of DomainNet
are shown in Tab. 1, Tab. 2, and Tab. 3. The observed per-
formance degradation of CoTTA [52], RoTTA [54] con-
firms the risk of error accumulation for an extensive pe-
riod. While RMT [12] and MECTA [20] remain stable, they
failed to adapt to the temporally correlated test stream at the
beginning, with a higher error rate than the source model.
LAME [7] (parameter-free TTA) does not suffer from col-
lapsing, but the accuracy is lagging behind since its perfor-
mance is constrained by the source model, and knowledge
acquisition via learning is impossible [7, 54].

In average, PeTTA simultaneously outperforms all base-
line approaches (including state-of-the-art RoTTA [54] and
LAME [7]) and persists across 20 visits over the three
datasets (see Fig. 1b-bottom, Fig. 4a-bottom for CIFAR-10-
C visualization). To accommodate collapsing prevention,
the degree of freedom for adaptation in PeTTA is more con-
strained. Hence, it takes a bit longer time for adaptation in
the first several visits but remains stable afterward. Fig. 4b-
right exhibits the confusion matrix at the last visit with sat-
isfactory accuracy among all categories.
Collapsing Pattern. The rise in classification error (Fig 1-
bottom) can be reasoned by observing the prediction fre-
quency of RoTTA [54] in an episodic TTA setting (Fig. 4a-
top). Similar to ✏-GMMC, the likelihood of receiving pre-
dictions on certain categories gradually increases and domi-
nates the others. Further inspecting the confusion matrix of
a collapsed model (Fig. 4b-left) reveals two major groups
of categories are formed and a single category within each
group represents all members, thereby becoming dominant.

PeTTA

the rationale behind these effective strategies before intro-
ducing our solution to bolster the resilience of TTA.
Regularization Term for ✓t. Knowing that f0 is always
well-behaved, an attempt is restricting the divergence of ✓t
from ✓0, e.g. using R(✓t)

�
= k✓0 � ✓tk22 (L2 regulariza-

tion [36]). The key idea is introducing a penalty term to
avoid an extreme divergence as happening in Thm. 1.
Memory Bank for Harmonizing Pt(x). Upon receiving
Xt, samples in this batch are selectively updated to a mem-
ory bank M (which already contains a subset of some in-
stances of Xt0 , t

0
< t in the previous steps). By keeping a

balanced number of samples from each category, distribu-
tion P

M
t (y) of samples in M is expected to have less zero

entries than Pt(y), making the optimization step over PM
t

more desirable. From Thm. 1, M moderates the extreme
value of the category distribution (p0 term) which typically
appears on batches with low intra-batch category diversity.

5. Persistent Test-time Adaptation (PeTTA)
Now we introduce our Persistent TTA (PeTTA) approach.
Further inspecting Thm. 1, while ✏t (Eq. 5) is not com-
putable without knowing the true labels, the measure of di-
vergence from the initial distribution (analogously to d

0!1
t�1

term) can provide hints to fine-tune the adaptation process.
Key Idea. A proper adjustment toward the TTA algorithm
can break the chain of increasing ✏t’s in Corollary 1 to pre-
vent the model collapse. In the mean teacher update, the
larger value of � (Eq. 2) prioritizes the task of preventing
collapse on one hand but also limits its adaptability to the
new testing environment. Meanwhile, ↵ (Eq. 3) controls the
weight on preserving versus changing the model from the
previous step. Drawing inspiration from the exploration-
exploitation tradeoff [23, 43] encountered in reinforcement
learning [47], we introduce a mechanism for adjusting �

and ↵ on the fly, balancing between the two primary ob-
jectives: adaptation and preventing model collapse. Our
strategy is prioritizing collapse prevention (increasing �)
and preserving the model from previous steps (decreasing
↵) when there is a significant deviation from ✓0.

Different from prior studies, the choice of � [36] and
↵ [52, 54] was selected by hyper-parameter tuning and kept
constant over time. This is less than the ideal approach
in TTA, where a testing environment might vary and the
validation set is typically unavailable [55]. Furthermore,
Thm. 1 suggests the rate of convergence quickly escalates
when ✏t increases. Hence, constant values for �,↵ might be
insufficient to stop the collapsing.
Sensing the Divergence of ✓t. We first equip PeTTA with
a mechanism for measuring its divergence from ✓0. No-
ticed that with ft(x) = argmax y2Y Pr(y|x; ✓t), we can
decompose Pr(y|x; ✓t) = [h (�✓t(x))]y , with �✓t(·) is a
✓t-parameterized deep feature extractor followed by a fixed
classification head (a linear and softmax layer) h(·). The

operator [·]y extracts the y
th component of a vector.

Since h(·) remains unchanged over time, instead of com-
paring the divergence in the parameter space (⇥) or between
the output probability Pr(y|x; ✓t) and Pr(y|x; ✓0), we sug-
gest an inspection over the feature embedding space that
preserves a maximum amount of information in our case
(data processing inequality [9]). Inspired by [28] and un-
der Gaussian assumption, the alignment of the first moment
of the feature embedding vectors is being compared. Let
z = �✓t(x), we keep track of a collection of the running
mean of feature vector z: {µ̂y

t }y2Y in which µ̂y
t is EMA

updated with vector z if ft(x) = y. The divergence of ✓t at
step t, evaluated on class y is defined as:

�
y
t = 1� exp

⇣
�(µ̂y

t � µy
0)

T (⌃y
0)

�1
(µ̂y

t � µy
0)
⌘
, (6)

where µy
0 and ⌃y

0 are the pre-computed empirical mean and
covariant matrix of feature vectors in the training set (P0).
For simplicity, the covariant matrix is diagonal.

Here, we implicitly expect the independence of each en-
try in z and TTA approaches learn to align feature vectors
of new domains back to the source domain (P0). Therefore,
the accumulated statistics of these feature vectors at each
step should be concentrated near the vectors of the initial
model. The value of �y

t 2 [0, 1] is close to 0 when ✓t = ✓0

and increases exponentially as µ̂y
t diverging from µy

0 .
Adaptive Regularization and Model Update. Utilizing
�
y
t derived in Eq. 6, a pair of (�t, ↵t) is chosen at each step:

�̄t =
1

|Ŷt|

X

y2Ŷt

�
y
t , Ŷt =

n
Ŷ

(i)
t |i = 1, · · · , Nt

o
;

�t = �̄t · �0, ↵t = (1� �̄t) · ↵0, (7)

where ↵0, �0 are initial values; Ŷt is a set of unique pseudo
labels in a testing batch (Ŷ (i)

t is the i
th realization of Ŷt).

Anchor Loss. Penalizing the divergence with regular vec-
tor norms in high-dimensional space (e.g., ⇥) is insufficient
(curse of dimensionality [5, 45]), especially with a large
model and limited samples (in TTA). Hence, we propose the
use of anchor loss LAL to further nail down the similarity
between ft and f0 in the output probability space [12, 29]:

LAL(Xt; ✓) = �
X

y2Y
Pr(y|Xt; ✓0) log Pr(y|Xt; ✓), (8)

which is equivalent to minimizing the KL divergence
DKL (Pr(y|Xt; ✓0)kPr(y|Xt; ✓)).
Persistent TTA. Having all the ingredients, we design our
approach, PeTTA, following the convention setup of the
mean teacher update, with the category-balanced memory
bank and the robust batch normalization layer from [54].
For LCLS, we either adopt the self-training scheme [12] or
the regular cross-entropy [16]. With R(✓), cosine similar-
ity or L2 distance are both valid metrics for measuring the
distance between ✓ and ✓0 in the parameter space. Fisher
regularizer coefficient [24, 36] can also be used, optionally.

(2) Adaptive Learning Rate and Regularization
(1) Sensing the divergence from 𝜽! 

the rationale behind these effective strategies before intro-
ducing our solution to bolster the resilience of TTA.
Regularization Term for ✓t. Knowing that f0 is always
well-behaved, an attempt is restricting the divergence of ✓t
from ✓0, e.g. using R(✓t)

�
= k✓0 � ✓tk22 (L2 regulariza-

tion [36]). The key idea is introducing a penalty term to
avoid an extreme divergence as happening in Thm. 1.
Memory Bank for Harmonizing Pt(x). Upon receiving
Xt, samples in this batch are selectively updated to a mem-
ory bank M (which already contains a subset of some in-
stances of Xt0 , t

0
< t in the previous steps). By keeping a

balanced number of samples from each category, distribu-
tion P

M
t (y) of samples in M is expected to have less zero

entries than Pt(y), making the optimization step over PM
t

more desirable. From Thm. 1, M moderates the extreme
value of the category distribution (p0 term) which typically
appears on batches with low intra-batch category diversity.

5. Persistent Test-time Adaptation (PeTTA)
Now we introduce our Persistent TTA (PeTTA) approach.
Further inspecting Thm. 1, while ✏t (Eq. 5) is not com-
putable without knowing the true labels, the measure of di-
vergence from the initial distribution (analogously to d

0!1
t�1

term) can provide hints to fine-tune the adaptation process.
Key Idea. A proper adjustment toward the TTA algorithm
can break the chain of increasing ✏t’s in Corollary 1 to pre-
vent the model collapse. In the mean teacher update, the
larger value of � (Eq. 2) prioritizes the task of preventing
collapse on one hand but also limits its adaptability to the
new testing environment. Meanwhile, ↵ (Eq. 3) controls the
weight on preserving versus changing the model from the
previous step. Drawing inspiration from the exploration-
exploitation tradeoff [23, 43] encountered in reinforcement
learning [47], we introduce a mechanism for adjusting �

and ↵ on the fly, balancing between the two primary ob-
jectives: adaptation and preventing model collapse. Our
strategy is prioritizing collapse prevention (increasing �)
and preserving the model from previous steps (decreasing
↵) when there is a significant deviation from ✓0.

Different from prior studies, the choice of � [36] and
↵ [52, 54] was selected by hyper-parameter tuning and kept
constant over time. This is less than the ideal approach
in TTA, where a testing environment might vary and the
validation set is typically unavailable [55]. Furthermore,
Thm. 1 suggests the rate of convergence quickly escalates
when ✏t increases. Hence, constant values for �,↵ might be
insufficient to stop the collapsing.
Sensing the Divergence of ✓t. We first equip PeTTA with
a mechanism for measuring its divergence from ✓0. No-
ticed that with ft(x) = argmax y2Y Pr(y|x; ✓t), we can
decompose Pr(y|x; ✓t) = [h (�✓t(x))]y , with �✓t(·) is a
✓t-parameterized deep feature extractor followed by a fixed
classification head (a linear and softmax layer) h(·). The

operator [·]y extracts the y
th component of a vector.

Since h(·) remains unchanged over time, instead of com-
paring the divergence in the parameter space (⇥) or between
the output probability Pr(y|x; ✓t) and Pr(y|x; ✓0), we sug-
gest an inspection over the feature embedding space that
preserves a maximum amount of information in our case
(data processing inequality [9]). Inspired by [28] and un-
der Gaussian assumption, the alignment of the first moment
of the feature embedding vectors is being compared. Let
z = �✓t(x), we keep track of a collection of the running
mean of feature vector z: {µ̂y

t }y2Y in which µ̂y
t is EMA

updated with vector z if ft(x) = y. The divergence of ✓t at
step t, evaluated on class y is defined as:
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where µy
0 and ⌃y

0 are the pre-computed empirical mean and
covariant matrix of feature vectors in the training set (P0).
For simplicity, the covariant matrix is diagonal.

Here, we implicitly expect the independence of each en-
try in z and TTA approaches learn to align feature vectors
of new domains back to the source domain (P0). Therefore,
the accumulated statistics of these feature vectors at each
step should be concentrated near the vectors of the initial
model. The value of �y

t 2 [0, 1] is close to 0 when ✓t = ✓0

and increases exponentially as µ̂y
t diverging from µy

0 .
Adaptive Regularization and Model Update. Utilizing
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y
t derived in Eq. 6, a pair of (�t, ↵t) is chosen at each step:
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where ↵0, �0 are initial values; Ŷt is a set of unique pseudo
labels in a testing batch (Ŷ (i)

t is the i
th realization of Ŷt).

Anchor Loss. Penalizing the divergence with regular vec-
tor norms in high-dimensional space (e.g., ⇥) is insufficient
(curse of dimensionality [5, 45]), especially with a large
model and limited samples (in TTA). Hence, we propose the
use of anchor loss LAL to further nail down the similarity
between ft and f0 in the output probability space [12, 29]:

LAL(Xt; ✓) = �
X

y2Y
Pr(y|Xt; ✓0) log Pr(y|Xt; ✓), (8)

which is equivalent to minimizing the KL divergence
DKL (Pr(y|Xt; ✓0)kPr(y|Xt; ✓)).
Persistent TTA. Having all the ingredients, we design our
approach, PeTTA, following the convention setup of the
mean teacher update, with the category-balanced memory
bank and the robust batch normalization layer from [54].
For LCLS, we either adopt the self-training scheme [12] or
the regular cross-entropy [16]. With R(✓), cosine similar-
ity or L2 distance are both valid metrics for measuring the
distance between ✓ and ✓0 in the parameter space. Fisher
regularizer coefficient [24, 36] can also be used, optionally.
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when ✏t increases. Hence, constant values for �,↵ might be
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✓t-parameterized deep feature extractor followed by a fixed
classification head (a linear and softmax layer) h(·). The

operator [·]y extracts the y
th component of a vector.

Since h(·) remains unchanged over time, instead of com-
paring the divergence in the parameter space (⇥) or between
the output probability Pr(y|x; ✓t) and Pr(y|x; ✓0), we sug-
gest an inspection over the feature embedding space that
preserves a maximum amount of information in our case
(data processing inequality [9]). Inspired by [28] and un-
der Gaussian assumption, the alignment of the first moment
of the feature embedding vectors is being compared. Let
z = �✓t(x), we keep track of a collection of the running
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For simplicity, the covariant matrix is diagonal.

Here, we implicitly expect the independence of each en-
try in z and TTA approaches learn to align feature vectors
of new domains back to the source domain (P0). Therefore,
the accumulated statistics of these feature vectors at each
step should be concentrated near the vectors of the initial
model. The value of �y
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where ↵0, �0 are initial values; Ŷt is a set of unique pseudo
labels in a testing batch (Ŷ (i)

t is the i
th realization of Ŷt).

Anchor Loss. Penalizing the divergence with regular vec-
tor norms in high-dimensional space (e.g., ⇥) is insufficient
(curse of dimensionality [5, 45]), especially with a large
model and limited samples (in TTA). Hence, we propose the
use of anchor loss LAL to further nail down the similarity
between ft and f0 in the output probability space [12, 29]:

LAL(Xt; ✓) = �
X

y2Y
Pr(y|Xt; ✓0) log Pr(y|Xt; ✓), (8)

which is equivalent to minimizing the KL divergence
DKL (Pr(y|Xt; ✓0)kPr(y|Xt; ✓)).
Persistent TTA. Having all the ingredients, we design our
approach, PeTTA, following the convention setup of the
mean teacher update, with the category-balanced memory
bank and the robust batch normalization layer from [54].
For LCLS, we either adopt the self-training scheme [12] or
the regular cross-entropy [16]. With R(✓), cosine similar-
ity or L2 distance are both valid metrics for measuring the
distance between ✓ and ✓0 in the parameter space. Fisher
regularizer coefficient [24, 36] can also be used, optionally.

(3) Anchor Loss

• Notation: With 𝜙$!is the deep-feature extractor of 𝑓#,  let 𝒛	 = 	𝜙$! 	(𝒙). Keeping track of a collection of the 
running mean of feature vector 𝒛: �̂�#

%
%∈𝒴	in which	"𝝁#

%is exponential moving average updated with the 
value of vector 𝒛 if 𝑓#(𝒙) 	= 	𝑦 

• Key Idea:  Sensing the divergence of 𝜙$! 	from 𝜙$", and adjust the adaptation objective correspondingly 

PeTTA is an “elaborated” version of the regular mean-teacher update model 

• With 𝝁!# , 𝚺!#  are pre-computed on the source dataset, we can: 

Adaptation loss 
(↑	performance)

Regularization
(↑	collapse 
prevention)
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Figure 4. Repeating TTA (20 visits) on CIFAR!CIFAR10-C task. (a) Histogram of model predictions (labels are color-coded). PeTTA
achieves a persisting performance while RoTTA (Yuan et al., 2023) degrades. (b) Confusion matrix at the last visit, RoTTA classifies all
samples into a few categories (e.g., 0: airplane, 4: deer). (c) Force-directed graph showing (left) the most prone to misclassification
pairs (arrows indicating the portion and pointing from the true to the misclassified category); (right) similar categories tend to be easily
collapsed. Edges denote the average cosine similarity of feature vectors (source model), only the highest similar pairs are shown.

Table 4. Average (across 20 visits) classification error of multiple
variations of PeTTA: without (w/o) regularization term R(✓), fixed
regularization coefficient �; adaptive coefficient �t with adaptive
update rate ↵t, and alignment loss LAL. To maintain TTA persis-
tence, fully utilizing all components is suggested.

Method CIFAR-10-C CIFAR-100-C DomainNet
Baseline w/o R(✓) 42.6 63.0 77.9
R(✓) fixed � = 0.1�0 43.3 65.0 80.0
R(✓) fixed � = �0 42.0 64.6 66.6
PeTTA - �t 27.1 55.0 59.7
PeTTA - �t + ↵t 23.9 41.4 44.5
PeTTA - �t + LAL 26.2 36.3 43.2
PeTTA - �t + ↵t + LAL 23.0 35.2 42.5

Table 5. Average (across 20 visits) classification error of PeTTA.
PeTTA favors various choices of regularizers R(✓): L2 and cosine
similarity in conjunction with Fisher coefficient.

Method CIFAR-10-C CIFAR-100-C DomainNetRegularizer Fisher

L2 7 23.0 35.6 43.1
3 22.7 36.0 43.9

Cosine 7 23.0 35.2 42.5
3 22.6 35.9 43.3

6.4. Ablation Study
Effect of Each Component. Tab. 4 gives an ablation study
on PeTTA. It is important to highlight that adding a regu-
larization term alone with a fixed choice of �,↵ not only
fails to mitigate the phenomenon of model collapse but may
also introduce a negative effect (rows 1-3). Within PeTTA,
adopting the adaptive �t scheme alone (row 4) or in conjunc-
tion with either ↵t or anchor loss LAL (rows 5-6) partially
stabilizes the performance. Under the drastic domain shifts
with a larger size of categories or model parameters (e.g.,
in DomainNet, CIFAR-100-C experiments), restricting ↵t

adjustment limits the ability of PeTTA to stop undesirable
updates while a common regularization term without LAL

is insufficient to guide the adaptation. Thus, leveraging all
elements secures the persistence of PeTTA (row 7).

Various Choices of Regularizers. The design of PeTTA is
not coupled with any specific regularization term. Demon-
strated in Tab. 5, PeTTA works well for the two common
choices: L2 and cosine similarity. We also investigate the
conjunction use of Fisher coefficent (Kirkpatrick et al., 2017;
Niu et al., 2022) for weighting the model parameter impor-
tance. While the benefit (in terms of improving accuracy)
varies across datasets, PeTTA accommodates all choices.

7. Discussion and Conclusion
On a Potential Risk of TTA in Practice. We provide
empirical and theoretical evidence on the risk of deploying
continual TTA algorithms. Existing studies fail to detect
this issue with a single pass per test set. The repeating
TTA could be conveniently adopted as a straightforward
evaluation, where its challenging test stream magnifies the
error accumulation that a model might encounter in practice.

Limitations and Future Work. PeTTA baseline takes one
step toward mitigating the gradual performance degradation
of TTA. Nevertheless, it is important to note that a complete
elimination of error accumulation cannot be guaranteed rig-
orously through regularization. Future research could delve
deeper into expanding our efforts to develop an algorithm
that achieves error accumulation-free by construction.

Conclusion. Towards trustworthy and reliable TTA appli-
cations, we rigorously study the performance degradation
problem of TTA. The proposed repeating TTA setting high-
lights the limitations of modern TTA methods, which strug-
gle to prevent the error accumulation when continuously
adapting to demanding test streams. Theoretically inspect-
ing a failure case of ✏�GMMC paves the road for designing
PeTTA- a simple yet efficient solution that continuously
assesses the model divergence for harmonizing the TTA
process, balancing adaptation, and collapse prevention.
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Confusion matrix of the two models at the last (20th) 
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Confusion Matrix (The last visit)
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Qualitative Results of PeTTA on CIFAR10-C  

Upon collapsing, RoTTA 
predicts a single label

We qualitatively compare the performance of PeTTA (Persistent Test-time Adaptation) and RoTTA (Robust Test-
time Adaptation [Yuan, 2023]) and analyze the model collapse on CIFAR10-C dataset    
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Figure 4. Repeating TTA (20 visits) on CIFAR!CIFAR10-C task. (a) Histogram of model predictions (labels are color-coded). PeTTA
achieves a persisting performance while RoTTA (Yuan et al., 2023) degrades. (b) Confusion matrix at the last visit, RoTTA classifies all
samples into a few categories (e.g., 0: airplane, 4: deer). (c) Force-directed graph showing (left) the most prone to misclassification
pairs (arrows indicating the portion and pointing from the true to the misclassified category); (right) similar categories tend to be easily
collapsed. Edges denote the average cosine similarity of feature vectors (source model), only the highest similar pairs are shown.

Table 4. Average (across 20 visits) classification error of multiple
variations of PeTTA: without (w/o) regularization term R(✓), fixed
regularization coefficient �; adaptive coefficient �t with adaptive
update rate ↵t, and alignment loss LAL. To maintain TTA persis-
tence, fully utilizing all components is suggested.

Method CIFAR-10-C CIFAR-100-C DomainNet
Baseline w/o R(✓) 42.6 63.0 77.9
R(✓) fixed � = 0.1�0 43.3 65.0 80.0
R(✓) fixed � = �0 42.0 64.6 66.6
PeTTA - �t 27.1 55.0 59.7
PeTTA - �t + ↵t 23.9 41.4 44.5
PeTTA - �t + LAL 26.2 36.3 43.2
PeTTA - �t + ↵t + LAL 23.0 35.2 42.5

Table 5. Average (across 20 visits) classification error of PeTTA.
PeTTA favors various choices of regularizers R(✓): L2 and cosine
similarity in conjunction with Fisher coefficient.

Method CIFAR-10-C CIFAR-100-C DomainNetRegularizer Fisher

L2 7 23.0 35.6 43.1
3 22.7 36.0 43.9

Cosine 7 23.0 35.2 42.5
3 22.6 35.9 43.3

6.4. Ablation Study
Effect of Each Component. Tab. 4 gives an ablation study
on PeTTA. It is important to highlight that adding a regu-
larization term alone with a fixed choice of �,↵ not only
fails to mitigate the phenomenon of model collapse but may
also introduce a negative effect (rows 1-3). Within PeTTA,
adopting the adaptive �t scheme alone (row 4) or in conjunc-
tion with either ↵t or anchor loss LAL (rows 5-6) partially
stabilizes the performance. Under the drastic domain shifts
with a larger size of categories or model parameters (e.g.,
in DomainNet, CIFAR-100-C experiments), restricting ↵t

adjustment limits the ability of PeTTA to stop undesirable
updates while a common regularization term without LAL

is insufficient to guide the adaptation. Thus, leveraging all
elements secures the persistence of PeTTA (row 7).

Various Choices of Regularizers. The design of PeTTA is
not coupled with any specific regularization term. Demon-
strated in Tab. 5, PeTTA works well for the two common
choices: L2 and cosine similarity. We also investigate the
conjunction use of Fisher coefficent (Kirkpatrick et al., 2017;
Niu et al., 2022) for weighting the model parameter impor-
tance. While the benefit (in terms of improving accuracy)
varies across datasets, PeTTA accommodates all choices.

7. Discussion and Conclusion
On a Potential Risk of TTA in Practice. We provide
empirical and theoretical evidence on the risk of deploying
continual TTA algorithms. Existing studies fail to detect
this issue with a single pass per test set. The repeating
TTA could be conveniently adopted as a straightforward
evaluation, where its challenging test stream magnifies the
error accumulation that a model might encounter in practice.

Limitations and Future Work. PeTTA baseline takes one
step toward mitigating the gradual performance degradation
of TTA. Nevertheless, it is important to note that a complete
elimination of error accumulation cannot be guaranteed rig-
orously through regularization. Future research could delve
deeper into expanding our efforts to develop an algorithm
that achieves error accumulation-free by construction.

Conclusion. Towards trustworthy and reliable TTA appli-
cations, we rigorously study the performance degradation
problem of TTA. The proposed repeating TTA setting high-
lights the limitations of modern TTA methods, which strug-
gle to prevent the error accumulation when continuously
adapting to demanding test streams. Theoretically inspect-
ing a failure case of ✏�GMMC paves the road for designing
PeTTA- a simple yet efficient solution that continuously
assesses the model divergence for harmonizing the TTA
process, balancing adaptation, and collapse prevention.
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Figure 4. Repeating TTA (20 visits) on CIFAR!CIFAR10-C task. (a) Histogram of model predictions (labels are color-coded). PeTTA
achieves a persisting performance while RoTTA (Yuan et al., 2023) degrades. (b) Confusion matrix at the last visit, RoTTA classifies all
samples into a few categories (e.g., 0: airplane, 4: deer). (c) Force-directed graph showing (left) the most prone to misclassification
pairs (arrows indicating the portion and pointing from the true to the misclassified category); (right) similar categories tend to be easily
collapsed. Edges denote the average cosine similarity of feature vectors (source model), only the highest similar pairs are shown.

Table 4. Average (across 20 visits) classification error of multiple
variations of PeTTA: without (w/o) regularization term R(✓), fixed
regularization coefficient �; adaptive coefficient �t with adaptive
update rate ↵t, and alignment loss LAL. To maintain TTA persis-
tence, fully utilizing all components is suggested.

Method CIFAR-10-C CIFAR-100-C DomainNet
Baseline w/o R(✓) 42.6 63.0 77.9
R(✓) fixed � = 0.1�0 43.3 65.0 80.0
R(✓) fixed � = �0 42.0 64.6 66.6
PeTTA - �t 27.1 55.0 59.7
PeTTA - �t + ↵t 23.9 41.4 44.5
PeTTA - �t + LAL 26.2 36.3 43.2
PeTTA - �t + ↵t + LAL 23.0 35.2 42.5

Table 5. Average (across 20 visits) classification error of PeTTA.
PeTTA favors various choices of regularizers R(✓): L2 and cosine
similarity in conjunction with Fisher coefficient.

Method CIFAR-10-C CIFAR-100-C DomainNetRegularizer Fisher

L2 7 23.0 35.6 43.1
3 22.7 36.0 43.9

Cosine 7 23.0 35.2 42.5
3 22.6 35.9 43.3

6.4. Ablation Study
Effect of Each Component. Tab. 4 gives an ablation study
on PeTTA. It is important to highlight that adding a regu-
larization term alone with a fixed choice of �,↵ not only
fails to mitigate the phenomenon of model collapse but may
also introduce a negative effect (rows 1-3). Within PeTTA,
adopting the adaptive �t scheme alone (row 4) or in conjunc-
tion with either ↵t or anchor loss LAL (rows 5-6) partially
stabilizes the performance. Under the drastic domain shifts
with a larger size of categories or model parameters (e.g.,
in DomainNet, CIFAR-100-C experiments), restricting ↵t

adjustment limits the ability of PeTTA to stop undesirable
updates while a common regularization term without LAL

is insufficient to guide the adaptation. Thus, leveraging all
elements secures the persistence of PeTTA (row 7).

Various Choices of Regularizers. The design of PeTTA is
not coupled with any specific regularization term. Demon-
strated in Tab. 5, PeTTA works well for the two common
choices: L2 and cosine similarity. We also investigate the
conjunction use of Fisher coefficent (Kirkpatrick et al., 2017;
Niu et al., 2022) for weighting the model parameter impor-
tance. While the benefit (in terms of improving accuracy)
varies across datasets, PeTTA accommodates all choices.

7. Discussion and Conclusion
On a Potential Risk of TTA in Practice. We provide
empirical and theoretical evidence on the risk of deploying
continual TTA algorithms. Existing studies fail to detect
this issue with a single pass per test set. The repeating
TTA could be conveniently adopted as a straightforward
evaluation, where its challenging test stream magnifies the
error accumulation that a model might encounter in practice.

Limitations and Future Work. PeTTA baseline takes one
step toward mitigating the gradual performance degradation
of TTA. Nevertheless, it is important to note that a complete
elimination of error accumulation cannot be guaranteed rig-
orously through regularization. Future research could delve
deeper into expanding our efforts to develop an algorithm
that achieves error accumulation-free by construction.

Conclusion. Towards trustworthy and reliable TTA appli-
cations, we rigorously study the performance degradation
problem of TTA. The proposed repeating TTA setting high-
lights the limitations of modern TTA methods, which strug-
gle to prevent the error accumulation when continuously
adapting to demanding test streams. Theoretically inspect-
ing a failure case of ✏�GMMC paves the road for designing
PeTTA- a simple yet efficient solution that continuously
assesses the model divergence for harmonizing the TTA
process, balancing adaptation, and collapse prevention.
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Force-directed graph showing the most prone 
to misclassification pairs have highest similarity 
in the feature space of the source model

Inter-category Similarity
Predicting collapsing behavior 

1 Each column on these plots shows the histogram of model prediction (class labels are color-coded). CIFAR-10-C has an 
equal number of images for 10 classes. Hence, predictions from an ideal model should follow a uniform distribution.
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Quantitative Results of PeTTA & Ablation Studies
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Figure 4. Episodic TTA (20 visits) on CIFAR!CIFAR10-C task. (a) Histogram of model predictions (labels are color-coded). PeTTA
achieves a persisting performance while RoTTA [54] degrades. (b) Confusion matrix at the last visit, RoTTA [54] classifies all samples
into a few categories (e.g., 0: airplane, 4: deer). (c) Force-directed graph showing (left) the most prone to misclassification pairs (arrows
indicating the portion and pointing from the true to the misclassified category); (right) similar categories tend to be easily collapsed. Edges
denote the average cosine similarity of feature vectors (source model), only the highest similar pairs are shown. Best viewed in color.

Table 4. Average (across 20 visits) classification error of multi-
ple variations of PeTTA: without (w/o) regularization term R(✓),
fixed regularization coefficient �; adaptive coefficient �t with
adaptive update rate ↵t, and alignment loss LAL. To maintain
TTA persistence, fully utilizing all components is suggested.

Method CIFAR-10-C CIFAR-100-C DomainNet
Baseline w/o R(✓) 42.6 63.0 77.9
R(✓) fixed � = 0.1�0 43.3 65.0 80.0
R(✓) fixed � = �0 42.0 64.6 66.6
PeTTA - �t 27.1 55.0 59.7
PeTTA - �t + ↵t 23.9 41.4 44.5
PeTTA - �t + LAL 26.2 36.3 43.2
PeTTA - �t + ↵t + LAL 23.0 35.2 42.5

Table 5. Average (across 20 visits) classification error of PeTTA.
PeTTA favors various choices of regularizers R(✓): L2 and cosine
similarity in conjunction with Fisher [24, 36] coefficient.

Method CIFAR-10-C CIFAR-100-C DomainNetRegularizer Fisher

L2 7 23.0 35.6 43.1
3 22.7 36.0 43.9

Cosine 7 23.0 35.2 42.5
3 22.6 35.9 43.3

also introduce a negative effect (rows 1-3). Within PeTTA,
adopting the adaptive �t scheme alone (row 4) or in con-
junction with either ↵t or anchor loss LAL (rows 5-6) par-
tially stabilizes the performance. Under the drastic domain
shifts with a larger size of categories or model parameters
(e.g., in DomainNet, CIFAR-100-C experiments), restrict-
ing ↵t adjustment limits the ability of PeTTA to stop unde-
sirable updates while a common regularization term without
LAL is insufficient to guide the adaptation. Thus, leveraging
all elements secures the persistence of PeTTA (row 7).
Various Choices of Regularizers. The design of PeTTA is
not coupled with any specific choice of regularization term.
Demonstrated in Tab. 5, PeTTA works well for the two com-

mon choices: L2 and cosine similarity. We also investi-
gate the conjunction use of Fisher coefficent [24, 36] for
weighting the importance of each model parameter. While
the benefit (in terms of improving accuracy) of using each
option varies across datasets, PeTTA accommodates all user
choices, ensuring the prevention of model collapse.

7. Discussion and Conclusion
On a Potential Risk of TTA in Practice. This study
provides empirical and theoretical evidence on the risk of
deploying TTA algorithms that require updating model pa-
rameters in applications without guaranteeing their lifelong
performance. Existing studies fail to detect this issue since
all current TTA evaluation protocol only requires a single
pass per experimental test set. Our proposed episodic TTA
could be conveniently adopted as a stress test for further
evaluating TTA algorithms. The challenge of the testing
stream introduced in this setup magnifies the error accumu-
lation that one TTA model might encounter in practice.
Limitations and Future Work. PeTTA baseline takes one
step toward mitigating the gradual performance degradation
of TTA. Nevertheless, it is important to note that a complete
elimination of error accumulation cannot be guaranteed rig-
orously through regularization. Future research could delve
deeper into expanding our efforts to develop an algorithm
that achieves error accumulation-free by construction.
Conclusion. Towards trustworthy and reliable real-world
TTA applications, we rigorously study the problem of per-
formance degradation in TTA where the error rate progres-
sively rises over time. The proposed episodic TTA setting
highlights the limitations of modern TTA methods, which
struggle to prevent the error accumulation when continu-
ously adapting to demanding test streams. Theoretically in-
specting a straightforward failure case of ✏�GMMC paves
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Figure 4. Episodic TTA (20 visits) on CIFAR!CIFAR10-C task. (a) Histogram of model predictions (labels are color-coded). PeTTA
achieves a persisting performance while RoTTA [54] degrades. (b) Confusion matrix at the last visit, RoTTA [54] classifies all samples
into a few categories (e.g., 0: airplane, 4: deer). (c) Force-directed graph showing (left) the most prone to misclassification pairs (arrows
indicating the portion and pointing from the true to the misclassified category); (right) similar categories tend to be easily collapsed. Edges
denote the average cosine similarity of feature vectors (source model), only the highest similar pairs are shown. Best viewed in color.

Table 4. Average (across 20 visits) classification error of multi-
ple variations of PeTTA: without (w/o) regularization term R(✓),
fixed regularization coefficient �; adaptive coefficient �t with
adaptive update rate ↵t, and alignment loss LAL. To maintain
TTA persistence, fully utilizing all components is suggested.

Method CIFAR-10-C CIFAR-100-C DomainNet
Baseline w/o R(✓) 42.6 63.0 77.9
R(✓) fixed � = 0.1�0 43.3 65.0 80.0
R(✓) fixed � = �0 42.0 64.6 66.6
PeTTA - �t 27.1 55.0 59.7
PeTTA - �t + ↵t 23.9 41.4 44.5
PeTTA - �t + LAL 26.2 36.3 43.2
PeTTA - �t + ↵t + LAL 23.0 35.2 42.5

Table 5. Average (across 20 visits) classification error of PeTTA.
PeTTA favors various choices of regularizers R(✓): L2 and cosine
similarity in conjunction with Fisher [24, 36] coefficient.

Method CIFAR-10-C CIFAR-100-C DomainNetRegularizer Fisher

L2 7 23.0 35.6 43.1
3 22.7 36.0 43.9

Cosine 7 23.0 35.2 42.5
3 22.6 35.9 43.3

also introduce a negative effect (rows 1-3). Within PeTTA,
adopting the adaptive �t scheme alone (row 4) or in con-
junction with either ↵t or anchor loss LAL (rows 5-6) par-
tially stabilizes the performance. Under the drastic domain
shifts with a larger size of categories or model parameters
(e.g., in DomainNet, CIFAR-100-C experiments), restrict-
ing ↵t adjustment limits the ability of PeTTA to stop unde-
sirable updates while a common regularization term without
LAL is insufficient to guide the adaptation. Thus, leveraging
all elements secures the persistence of PeTTA (row 7).
Various Choices of Regularizers. The design of PeTTA is
not coupled with any specific choice of regularization term.
Demonstrated in Tab. 5, PeTTA works well for the two com-

mon choices: L2 and cosine similarity. We also investi-
gate the conjunction use of Fisher coefficent [24, 36] for
weighting the importance of each model parameter. While
the benefit (in terms of improving accuracy) of using each
option varies across datasets, PeTTA accommodates all user
choices, ensuring the prevention of model collapse.

7. Discussion and Conclusion
On a Potential Risk of TTA in Practice. This study
provides empirical and theoretical evidence on the risk of
deploying TTA algorithms that require updating model pa-
rameters in applications without guaranteeing their lifelong
performance. Existing studies fail to detect this issue since
all current TTA evaluation protocol only requires a single
pass per experimental test set. Our proposed episodic TTA
could be conveniently adopted as a stress test for further
evaluating TTA algorithms. The challenge of the testing
stream introduced in this setup magnifies the error accumu-
lation that one TTA model might encounter in practice.
Limitations and Future Work. PeTTA baseline takes one
step toward mitigating the gradual performance degradation
of TTA. Nevertheless, it is important to note that a complete
elimination of error accumulation cannot be guaranteed rig-
orously through regularization. Future research could delve
deeper into expanding our efforts to develop an algorithm
that achieves error accumulation-free by construction.
Conclusion. Towards trustworthy and reliable real-world
TTA applications, we rigorously study the problem of per-
formance degradation in TTA where the error rate progres-
sively rises over time. The proposed episodic TTA setting
highlights the limitations of modern TTA methods, which
struggle to prevent the error accumulation when continu-
ously adapting to demanding test streams. Theoretically in-
specting a straightforward failure case of ✏�GMMC paves

Ablation Studies:

Without using/ fixed 
regularization coefficients 
does not address the 
performance degradation

PeTTA favors various choices 
of regularizer ℛ(𝜃) To maintain persistence, utilizing all 

components is suggested in PeTTA

We evaluate our PeTTA and five other comparable TTA methods in recurring TTA setting on ImageNet-C dataset

PeTTA 
achieves 
the lowest 
average 
error 

PeTTA shows a persisting performance across 20 recurring TTA visits
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Conclusions: Persistent Test-time Adaptation (PeTTA)

Introducing a new testing scenario – recurring TTA for demonstrating 
the performance degradation of existing continual TTA methods 

Conducting theoretical analysis on performance degradation of TTA 
on 𝜖−GMMC, indicating factors that contribute to model collapse

Introducing a new baseline – persistent TTA (PeTTA). PeTTA  strikes a 
balance between two objectives: adaptation and collapse prevention

For more information, visit our project page at 👉
See you at:
POSTER SECTION 4 (Thursday Afternoon)


