

How to compute Tensor Train Decomposition?

- TT SVD
- Randomized TT SVD
- TT ALS
- $T = AL$
- Randomized TTL ALS (proposa

why Tensor Train Decomposition?

- \cdot # of parameters $O(NIR^2)$ instead of $O(I^N)$ order of a $f = \frac{1}{4}$ Ly rank of decomposition
Tensor
dimension size ($I_1 - I_2 = ... = I_N = I$ dimension size $(I_1 = I_2 = ... = I_N = I)$
- . Finding a good approximation is feasible.
- . Numerically Stable.

why Randomized Alternating Least squares (ALS)? Lack of randomized ALS methods to find a Tensor Train Decomposition.

ioal:

- \checkmark Initialize φ , φ , φ , φ , randomly.
- update one core at ^a time until convergence

 \mathbb{Q}

I

R

min $\|(A^{xj} \otimes A^{xj}) (A_j)_{(2)}^T - X_{(j)}^T \|_F^2$
Aj A Cost $O(T^N)$ to solve Least-squares Randomized Tensor Train ALS (proposal) . General Randomized Leas-Squares $min || AX - b||^2$ instead $min || SAX - Sbl|^2$

- Randomized Tensor Train Least_squares min $||$ $S(A \cdot \& A)$ **T** A_j)₍₂₎ $-$ SX_{ij}, 11 Aj
	- S is ^a sampling matrix

L& How to construct S?

$$
\begin{array}{ll}\n\text{[The image shows]} & \mathbb{P}_i \text{ of } A[i,:] (A^T A)^T A[i,:] \\
\text{In tensor train Case:} & \mathbb{P}_i \text{ of } A[i,:] (A^T A)^T A[i,:] \\
\text{Compute } P_i \text{ of } A^T [i^*j,:] A^T [i^*j,:] \\
\text{Compute } P_i \text{ of } A^T [i^*j,:] A^T [i^*j,:] \\
\text{Solution} & \text{Suppose we have drawn } \hat{S}_{j-1} = \hat{S}_{j-1} \text{ , } ... \text{ , } \hat{S}_{K+1} = S_{K+1} \\
\text{and now want to draw } \hat{S}_{K} = S_{K} \\
\text{[The image shows]} & \mathbb{P}_i \left\{ \hat{S}_{K} = S_{K} \mid \hat{S}_{j-1} = S_{j-1} \text{ , } ... \text{ , } \hat{S}_{K+1} = S_{K+1} \right\} = \\
& \frac{\text{[The image shows]} & \mathbb{P}_i \left\{ \hat{S}_{K} = S_{K}, ... \text{ , } \hat{S}_{j-1} = S_{j-1} \right\}}{\text{[The image shows]} & \mathbb{P}_i \left\{ \hat{S}_{K+1} = S_{K+1} \text{ , } ... \text{ , } \hat{S}_{j-1} = S_{j-1} \right\}} \\
\text{[The image shows]} & \mathbb{P}_i \left\{ \text{[The image shows]} & \mathbb{P}_i \text{[The image shows]} \right\} \\
\text{[The image shows]} & \mathbb{P}_i \left\{ \text{[The image shows]} & \mathbb{P}_i \text{[The image shows]} \right\} \\
\text{[The image shows]} & \mathbb{P}_i \left\{ \text{[The image shows]} & \mathbb{P}_i \text{[The image shows]} \\
\text{[The image shows]} & \mathbb{P}_i \text{[The image shows]} \\
\text{[The image shows]} & \mathbb{P}_i \text{[The image shows]} \\
\text{[The image shows]} & \mathbb{P}_i \text{[The image shows]} \\
\text{[The image shows]} & \mathbb{P}_i \text{[The image shows]} \\
\text{[The image shows]} & \mathbb{P}_i \text{[The image shows]} \\
\text{[The image shows]} &
$$

$$
P(S_K = S_K | S_{7k} = S_{7k})
$$

Tr (H_{7k} A_k[:, S_k,:]^{T} A[:, S_k,:] H_{7k})

where
\n
$$
H_{7k} = A_{k+1}[...,S_{k+1},]...A_{j-1}[...,S_{j-1},:]
$$

\n \triangle Updating H_{7k} cast $O(R^3)$

Define
$$
q = \frac{1}{R} (LL:,1]^2+...+LL:,R]^2
$$
 where $L=A^{j}$

- Sample ^a column uniformly ^L
- $\sqrt{ \text{Sample}}$ a row from $\lfloor L : , t \rfloor^2$
- G Reduce the cost to $O(R^2)$

For any \mathcal{C}_e , $S \in (0,1)$ the sampling procedure above guarantees that with $T = 0$ (R^2 / ϵ_6) sample per Least_Square problem

 $\|\vec{A}^{ij}(\vec{A}_j)\|_{23} - \vec{X_{ij}}\| \preccurlyeq (1+\hat{\epsilon})$ min $\|\vec{A}^{ij}(A_j)\|_{23} - \vec{X_{ij}}\|$

The overall complexity

$$
O(\frac{\# iter}{98}R^{4}\sum_{j=1}^{N}NlogI_{j}+I_{j})
$$

Experiments: r Synthetic Dense Tensors (J=5000, Strials)

 r Real Data $1J=2000$, target rank $R=5$)

Fit vs $\forall m \in R = 6$, $J = 16$

Thank you!