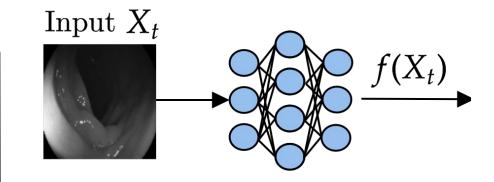
Localized Adaptive Risk Control

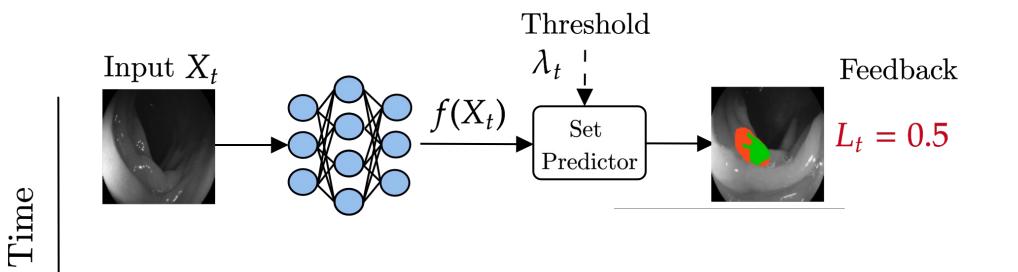
Matteo Zecchin and Osvaldo Simeone Centre for Intelligent Information Processing Systems, King's College London

Online Calibration

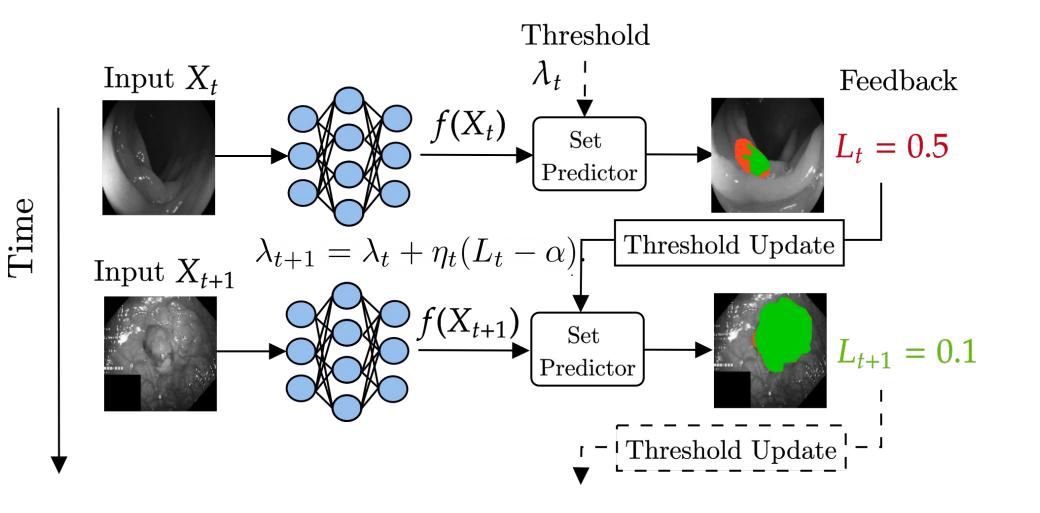
Time



Online Calibration



Online Calibration



Online Calibration via Adaptive Risk Control

Worst-case deterministic guarantees (informal) [1]

For any data sequence $\{(X_t, Y_t)\}_{t \ge 1}$ and specified reliability level $\alpha \in [0, B]$, the long-term risk satisfies

$$\frac{1}{T} \sum_{t=1}^{T} L_t - \alpha \bigg| \le \frac{S_{\max} + \eta_1 B}{\sqrt{T}}$$

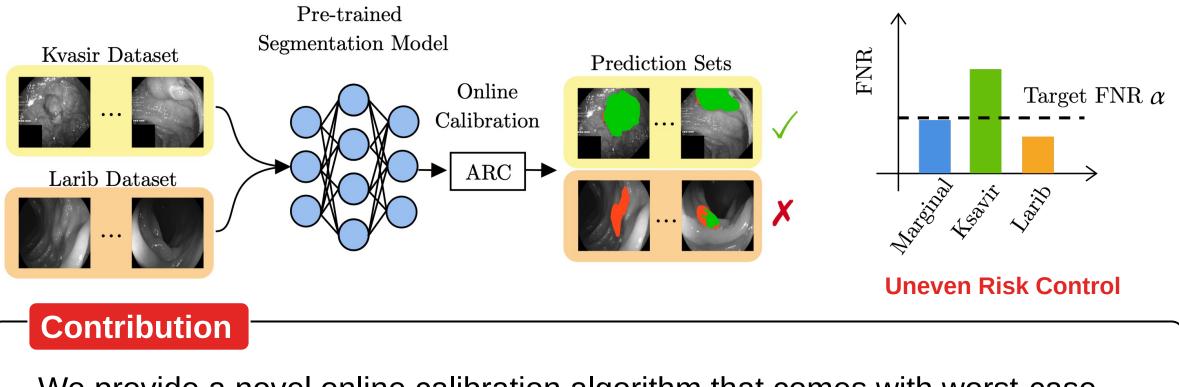
Asymptotic marginal guarantees (informal) [2]

For i.i.d. data sequences $(X_t, Y_t) \sim P_{XY}$ and loss $\mathcal{L}(C, y) = \mathbb{1}\{y \notin C\}$, the prediction sets satisfies asymptotic marginal coverage

$$\lim_{T \to \infty} \Pr\left[Y \notin C_T\right] \stackrel{p}{=} \alpha$$

[1] Feldman, Shai, et al. "Achieving Risk Control in Online Learning Settings." *Transactions on Machine Learning Research* (2024).
[2] Angelopoulos, Anastasios Nikolas, Rina Barber, and Stephen Bates. "Online conformal prediction with decaying step sizes." *ICML (2024)*.

Limitations of Marginal Risk Control

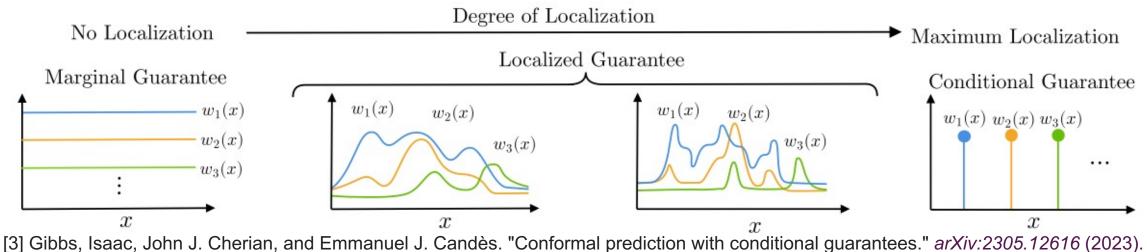


We provide a novel online calibration algorithm that comes with worst-case deterministic guarantees as well as asymptotic localized risk control.

Localized risk control^[3] control the risk for a class of covariate shifts

$$\mathbb{E}_{X,Y,\mathcal{D}_{\text{cal}}}\left[\frac{w(X)}{\mathbb{E}_X[w(X)]}\mathcal{L}(C(X|\mathcal{D}_{\text{cal}}),Y)\right] \leq \alpha, \text{ for all } w(\cdot) \in \mathcal{W}.$$

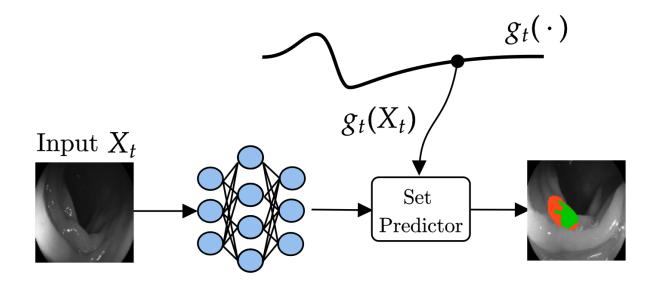
The degree of localization of the functions in set ${\mathcal W}$ dictates the strength of the guarantee.



Localized Adaptive Risk Control

Localized Adaptive Risk Control (L-ARC) generates prediction sets based on a threshold function $g_t(\cdot) \in \mathcal{G}$

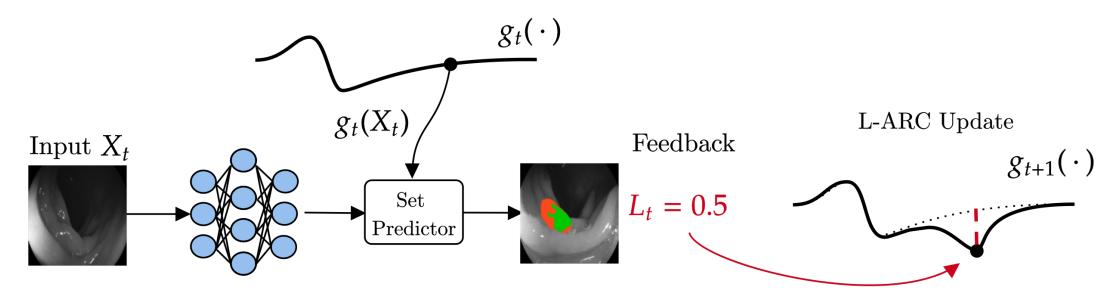
$$C_t = C(X_t, g_t) := \{ y \in \mathcal{Y} : s(X_t, y) \le g_t(X_t) \}.$$



Localized Adaptive Risk Control (L-ARC) generates prediction sets based on a threshold function $g_t(\cdot) \in \mathcal{G}$

$$C_t = C(X_t, g_t) := \{ y \in \mathcal{Y} : s(X_t, y) \le g_t(X_t) \}.$$

The threshold $g_t(\cdot) = f_t(\cdot) + c_t$ consists of a function $f_t(\cdot)$ within an RKHS \mathcal{H} and a constant c_t that are updated using an online kernel gradient descent rule.



LARC Guarantees

Worst-case deterministic guarantees (informal)

For any sequence $\{(X_t, Y_t)\}_{t \ge 1}$ and reliability level $\alpha \in [0, B]$, the long-term risk satisfies $\left|\frac{1}{T}\sum_{t=1}^{T} \mathcal{L}(C(X_t, g_t), Y_t) - \alpha\right| \le \frac{B(\mathcal{G})}{\sqrt{T}} + C(\mathcal{G}).$

LARC Guarantees

Worst-case deterministic guarantees (informal)

For any sequence $\{(X_t, Y_t)\}_{t \ge 1}$ and reliability level $\alpha \in [0, B]$, the long-term risk satisfies $\left|\frac{1}{T}\sum_{t=1}^{T} \mathcal{L}(C(X_t, g_t), Y_t) - \alpha\right| \le \frac{B(\mathcal{G})}{\sqrt{T}} + C(\mathcal{G}).$

Asymptotic localized guarantees (informal)

For i.i.d. data sequences $(X_t, Y_t) \sim P_{XY}$ L-ARC prediction sets provide asymptotic *localized* risk control

$$\limsup_{T \to \infty} \mathbb{E}_{X,Y} \left[\frac{w(X)}{\mathbb{E}_X[w(X)]} \mathcal{L}(C(X, \bar{g}_T), Y) \right] \stackrel{p}{\leq} \alpha + A(\mathcal{G}, w).$$

LARC Guarantees

Worst-case deterministic guarantees (informal)

For any sequence $\{(X_t, Y_t)\}_{t \ge 1}$ and reliability level $\alpha \in [0, B]$, the long-term risk satisfies

$$\left|\frac{1}{T}\sum_{t=1}^{I}\mathcal{L}(C(X_t, g_t), Y_t) - \alpha\right| \leq \frac{B(\mathcal{G})}{\sqrt{T}} + C(\mathcal{G}).$$

Asymptotic localized guarantees (informal)

For i.i.d. data sequences $(X_t, Y_t) \sim P_{XY}$ L-ARC prediction sets provide asymptotic *localized* risk control

$$\limsup_{T \to \infty} \mathbb{E}_{X,Y} \left[\frac{w(X)}{\mathbb{E}_X[w(X)]} \mathcal{L}(C(X, \bar{g}_T), Y) \right] \stackrel{p}{\leq} \alpha + \mathcal{A}(\mathcal{G}, w).$$

Proportional to the degree of localization of functions in \mathcal{G} and zero for constant function, thereby recovering Adaptive Risk Control as a special case.

Example: Tumor Segmentation

Tumor segmentation with false negative ratio (FNR) guarantees.

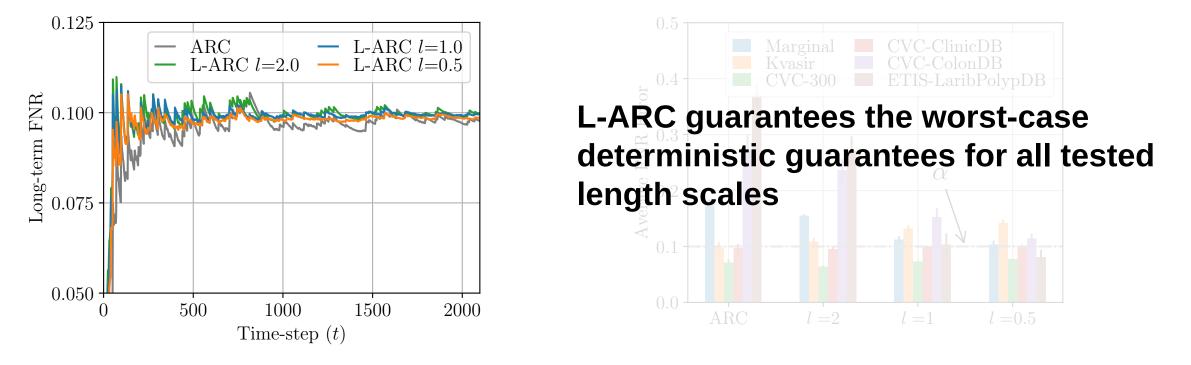
Calibration data is from 5 different datasets.

In L-ARC, the length scale l of the kernel controls the localization of the threshold function.

Tumor segmentation with false negative ratio (FNR) guarantees.

Calibration data is from 5 different datasets.

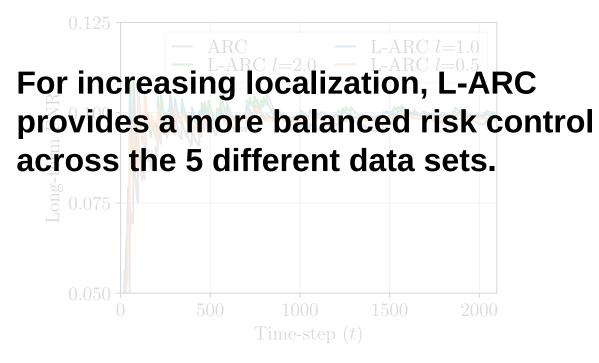
In L-ARC, the length scale l of the kernel controls the localization of the threshold function.

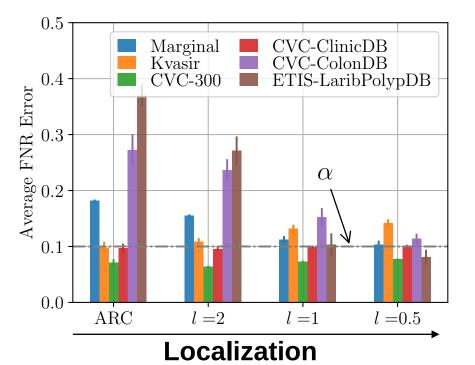


Tumor segmentation with false negative ratio (FNR) guarantees.

Calibration data is from 5 different datasets.

In L-ARC, the length scale l of the kernel controls the localization of the threshold function.





Conclusion

We proposed Localized Adaptive Risk Control (L-ARC), an online calibration scheme offering both **worst-case deterministic** and **asymptotic localized risk control**.

In a variety of experiments, L-ARC is shown to provide more balanced and fairer risk control as compared to ARC.

Thank you for your attention! For more details:

matteo.1.zecchin@kcl.ac.uk

This work was supported by the CENTRIC European Project - H2020 Grant Agreement Number: 101096379