Deep Learning for Computing Convergence Rates of Markov Chains

Yanlin Qu, Jose Blanchet, Peter Glynn Stanford University

NeurIPS 2024 Spotlight

Example of a Markov Chain

What is the percentage of sunny days in the long run?

$$
P(X_n = \bigotimes P(X_{\infty} = \bigotimes P) = 5/7
$$

Importance of Convergence Analysis

 $X_{n+1} = (X_n + S_{n+1} - A_{n+1})_+$

 $X_{n+1} = X_n - \alpha \nabla L(X_n, Z_{n+1})$

How fast does X_n converge to X_∞ ?

Stanford ENGINEERING

Convergence Analysis: Old and New

Drift & Contraction, Hairer et al. (2011) Contractive Drift (CD), Qu et al. (2023) $PV(x) = \mathbb{E}_x V(X_1) \leq V(x) - U(x), \quad x \notin C$ $W(P(y, \cdot), P(z, \cdot)) \leq \alpha d(y, z), \quad y, z \in C$

 $KV(x) = \mathbb{E}_x Df(x)V(f(x)) \leq V(x) - U(x)$ $Df(x) \approx \Delta f(x)/\Delta x$, $X_{n+1} = f_{n+1}(X_n)$

Stanford ENGINEERING

Hairer, M., Mattingly, J. C. & Scheutzow, M. (2011), Asymptotic coupling and a general form of Harris' theorem with applications to stochastic delay equations, Probability Theory and Related Fields 149(1), 223–259. Qu, Y., Blanchet, J. & Glynn, P. (2023), Computable bounds on convergence of Markov chains in Wasserstein distance, arXiv:2308.10341.

From Pen and Paper to Deep Learning

Q, Blanchet, Glynn (2024)

Contractive Drift Equation (CDE)

• Let $X_{n+1} = f_{n+1}(X_n)$ be a Markov chain on $\mathcal{X} \subset \mathbb{R}^d$.

- If f is differentiable, then $Df(x) = ||\nabla f(x)||$.
- CD is actually CDE: $KV(x) = \mathbb{E}Df(x)V(f(x))\bigoplus V(x) U(x)$.

Theorem. Fix U and suppose that $KW \leq W-U$ has a non-negative finite solution W_* . Then

$$
V_*(x) \stackrel{\Delta}{=} \mathbb{E}_x \left[\sum_{k=0}^{\infty} U(X_k) \prod_{l=1}^k Df_l(X_{l-1}) \right], \quad x \in \mathcal{X}
$$

is finite and satisfies $KV_* = V_* - U$. Furthermore, $KV = V - U$ has at most one bounded solution.

Stanford ENGINEERING

Why do we introduce CDE?

- Physics-informed neural networks (PINNs) solve a PDE by minimizing its integrated squared residual; see Raissi et al. (2019).
- The residual of a CDE is $(X_0 \sim h)$

$$
2l(\theta) = \int_{\mathcal{X}} (KV_{\theta}(x) - V_{\theta}(x) + U(x))^2 h(x) dx
$$

= $\mathbb{E} [\mathbb{E} [Df_1(X_0)V_{\theta}(f_1(X_0)) - V_{\theta}(X_0) + U(X_0)|X_0]]^2$

• Its derivative $l'(\theta)$ is $(f_1, f_{-1}$ iid)

 $\mathbb{E} \left[\left[Df_1(X_0)V_{\theta}(f_1(X_0)) - V_{\theta}(X_0) + U(X_0) \right] \left[Df_{-1}(X_0)V_{\theta}'(f_{-1}(X_0)) - V_{\theta}'(X_0) \right] \right],$

which leads to an unbiased gradient estimator.

Raissi, M., Perdikaris, P. & Karniadakis, G. E. (2019), Physics-informed neural networks: A deep learning framework for solving forward
and inverse problems involving nonlinear partial differential equations, Journal of Co

Stanford ENGINEERING

Deep Contractive Drift Calculator (DCDC)

Require: Step-size α , number of iterations T, neural network $\{V_{\theta} : \theta \in \Theta\}$, initialization θ_0 for $t \in \{0, ..., T-1\}$ do sample (X_0, f_1, f_{-1}) compute $\hat{l}'(\theta_t)$ as $[Df_1(X_0)V_{\theta_t}(f_1(X_0))-V_{\theta_t}(X_0)+U(X_0)] [Df_{-1}(X_0)V'_{\theta_t}(f_{-1}(X_0))-V'_{\theta_t}(X_0)]$

update $\theta_{t+1} = \theta_t - \alpha \hat{l}'(\theta_t)$ (SGD or its variants) end for convert V_{θ_T} into a convergence bound

$$
W(X_n, X_{\infty}) \le Cr^n, \ \ r = 1 - \inf U / \sup V, \ \ C = \frac{\mathbb{E} \left\|X_0 - X_1\right\| V(X_0 + \tilde{U}(X_1 - X_0))}{\inf U \cdot (\inf V / \sup V)}.
$$

A Realistic SGD Example

- Data: $(x_1, y_1), ..., (x_m, y_m) \in [-1/2, 1/2]^2 \times \{0, 1\}$
- Regularized logistic loss:

$$
-\frac{1}{m}\sum_{i=1}^{m}(y_i\log p_i + (1-y_i)\log(1-p_i)) + \frac{\lambda}{2m} ||b||^2, \ \ p_i = \sigma(b^\top x_i)
$$

• SGD with step-size α and batch-size β :

$$
f(b) = b(1 - \lambda \alpha/m) + (\alpha/\beta) \sum_{i \in B} [y_i - \sigma(b^\top x_i)] x_i
$$

•
$$
m = 100, \lambda = 1, \alpha = 0.1, \beta = 10
$$

A Realistic SGD Example

- A single-layer network with width 1000 and sigmoid activation
- $W(X_n, X_\infty) \leq 8.1(1 1.07 \times 10^{-3})^n$

Learned solution of $KV = V - 0.1$

Estimated difference $\hat{K}\tilde{V}-\tilde{V}$

Stanford ENGINEERING

Takeaway

DCDC is just a start, the start of **computational** Markov chain convergence ana

Thank you

https://quyanlin.github.io/