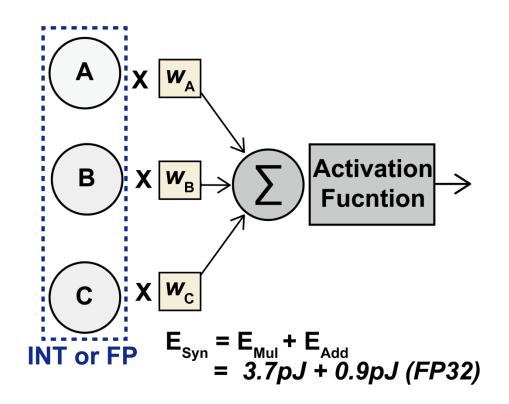
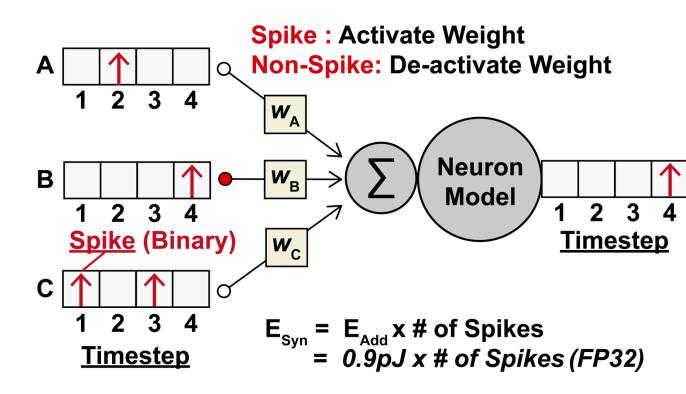
SpikedAttention: Training-Free and Fully Spike-Driven Transformer-to-SNN Conversion with Winner-Oriented Spike Shift for Softmax Operation

Presenter: Sangwoo Hwang (DGIST, Korea)

IDSLab Intelligent Digital Systems

Why Do We Need to Focus on SNN?





Pros

- 1. Activation is Binary
- 2. Only Accumulations
- 3. Sparse Inputs (= Spikes)

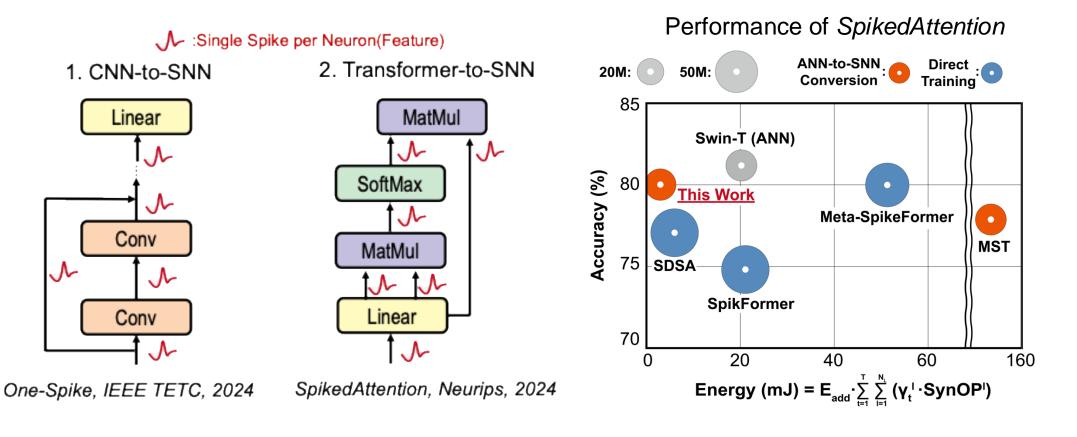
<u>Cons</u>

- 1. Complex Neuron Model
- 2. # of Neuron Updates \propto # of Timesteps

(Possible Solution 🥄)

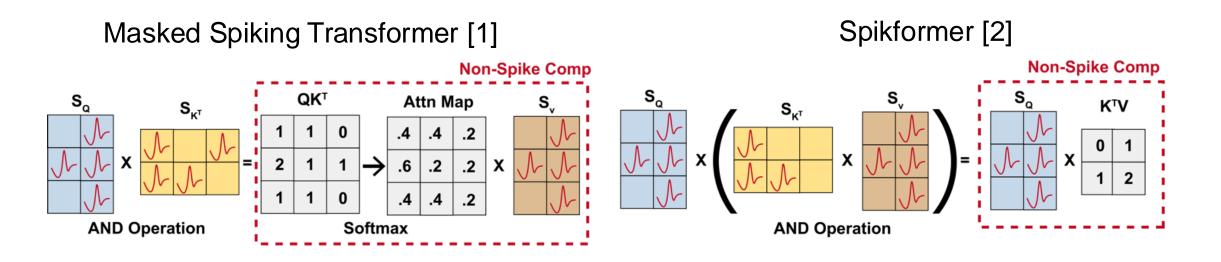
Increase Spike Sparsity or Reduce # of Timesteps

Overview of "SpikedAttention"



- No Constraints for Conversion
 Versatility ↑
- Fully Spike-based & Single Spike per Neuron ► Energy Efficiency ↑
- Training-Free ANN-to-SNN Conversion ► Training Cost ↓

Challenge: Absence of "Fully Spike-driven" Attention



(Prob. I) Dynamic Matrix Multiplication

- 1. AND Operation between Spikes (QK^T)
 - \rightarrow Requires Long Timestep due to High Sparsity

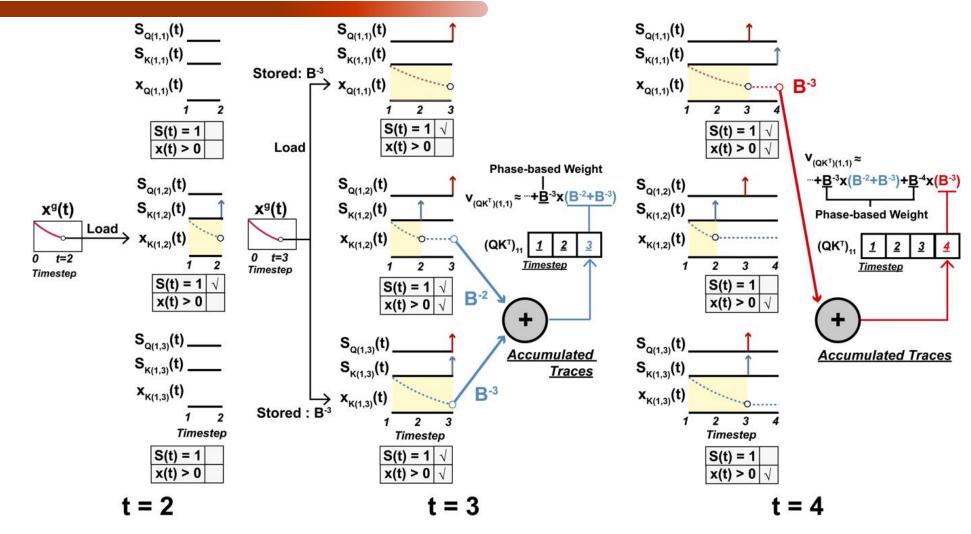
(Prob. II) Softmax

- 1. Conventional Softmax
 - → Non-Spiked FP32 Computation
- 2. Removal of Softmax
 - → High Training Cost

[1] Z. Wang, Y. Fang, J. Cao, Q. Zhang, Z. Wang, and R. Xu, "Masked spiking transformer," in Procs of ICCV, 2023.

[2] Z. Zhou, Y. Zhu, C. He, Y. Wang, S. YAN, Y. Tian, and L. Yuan, "Spikformer: When spiking neural network meets transformer," in Procs. of ICLR, 2023.

Trace-driven Multiplication for Dynamic Matrix Multiplication

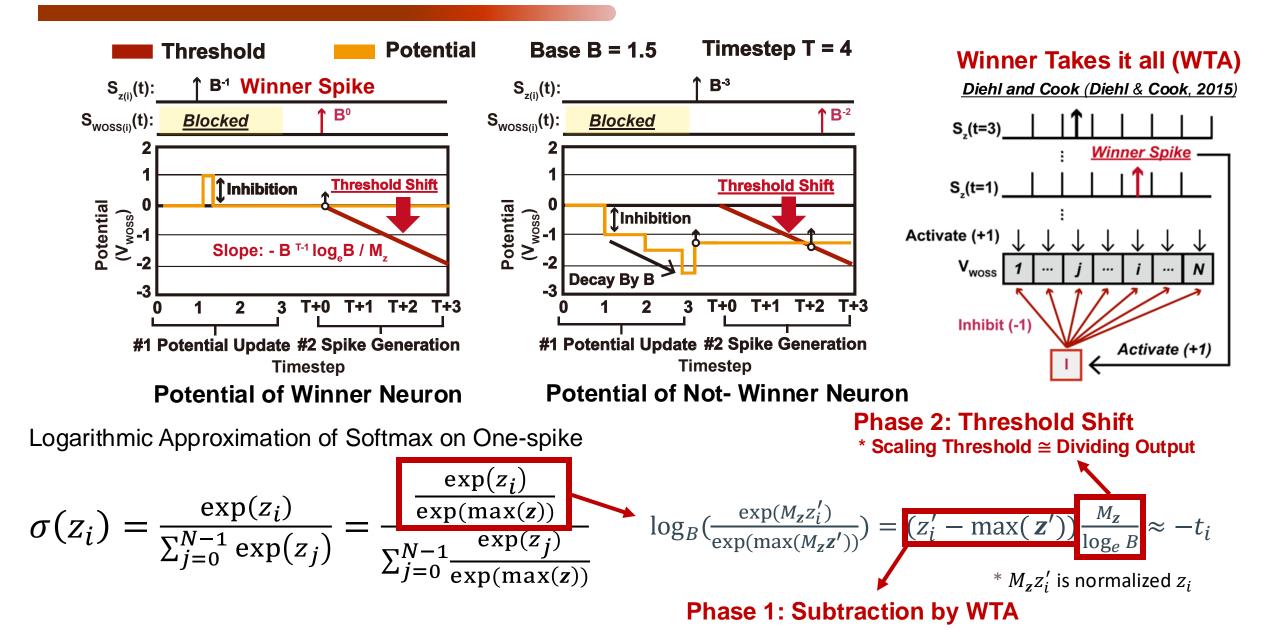


A. Keep Track of Spike Trace

(= history of neuron spikes)

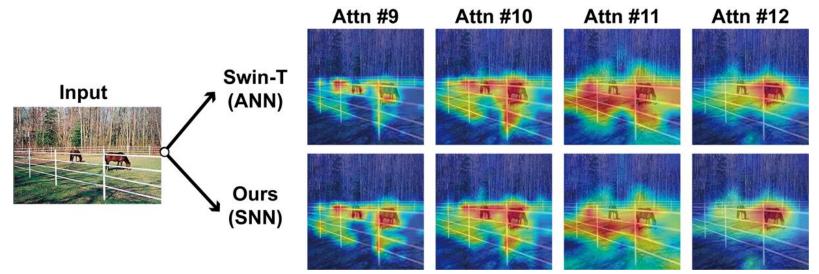
B. Accumulation of Traces at Paired Neuron's Spike when Pair Neuron have trace.

Winner-Oriented Spike Shift for Softmax



Result: SOTA Accuracy with Less # Parameters w/o Training

Comparison of attention maps based on Score-CAM between Swin-T (baseline ANN) and SpikedAttention



Comparison between SpikedAttention and the prior work on ImageNet classification task

Model	Param (M)	Energy (mJ)	Timestep	Acc (%)
Spikformer [2]	66.3	21.5	4	74.8
SDSA [3]	66.3	6.1	4	77.1
Meta-SpikeFormer [4]	55.4	52.4	4	80.0
MST [1]	28.5	158.6	128	77.9
Ours	28.7	3.0	40	80.0

Note: SpikedAtttention with long timestep use only one spike per Neuron > Low energy Cost

Result: BERT-to-SNN Conversion

Dataset	COLA	MNLI	MRPC	QNLI			
MA-BERT (ANN)							
Accuracy (%)	59.8	84.7	84.3	91.4			
Energy (mJ)	189.7	189.7	189.7	189.7			
SpikingBERT (SNN)							
Accuracy (%)	-	78.1	79.2	85.2			
SpikedAttention (SNN)							
Timestep	24	24	16	24			
Accuracy (%)	59.3	84.4	84.1	91.0			
Energy (mJ)	81.5	82.1	77.5	81.6			

 \rightarrow 58% Energy Reduction and 3.6% Higher Accuracy than SpikingBERT

(Contributions)

- 1. No Model Modification
- 2. Fully Spike-based Computing
- 3. Single Spike per Neuron
- 4. Training-Free ANN-to-SNN Conversion