SLIM: Style-Linguistics Mismatch Model for Generalized Audio Deepfake Detection

Y. Zhu^{1,2} S. Koppisetti¹ T. Tran¹ G. Bharaj¹

¹Reality Defender

²Institut National de la Recherche Scientifique (INRS)

NeurIPS 2024

2 System description

Yi Zhu (yi@realitydefender.ai)

Waveform \rightarrow Upstream encoder (e.g., w2v) \rightarrow Downstream classifier

• Data augmentations

- RawBoost (Tak et al. 2022)
- Vocoded data (Wang and Yamagishi 2023)

Waveform \rightarrow Upstream encoder (e.g., w2v) \rightarrow Downstream classifier

Data augmentations

- RawBoost (Tak et al. 2022)
- Vocoded data (Wang and Yamagishi 2023)

Improving classifiers

- AASIST (Jung et al. 2022)
- MFA (Guo et al. 2024)

Waveform \rightarrow Upstream encoder (e.g., w2v) \rightarrow Downstream classifier

Data augmentations

- RawBoost (Tak et al. 2022)
- Vocoded data (Wang and Yamagishi 2023)
- Improving classifiers
 - AASIST (Jung et al. 2022)
 - MFA (Guo et al. 2024)
- Others
 - Model distillation (Lu et al. 2024)
 - Ensemble multiple upstream representations (Yang et al. 2024)
 - Full finetune

• Using knowledge-based features

- Vocal tract (Blue et al. 2022)
- Breathing (Layton et al. 2024)
- Emotions (Conti et al. 2022)

Performance-interpretability tradeoff

Using knowledge-based features

- Vocal tract (Blue et al. 2022)
- Breathing (Layton et al. 2024)
- Emotions (Conti et al. 2022)
- 🤔 Performance-interpretability tradeoff
- Post-hoc XAI methods
 - Saliency map
 - 🤔 Sensitive to hyperparam setup

Waveform \rightarrow Upstream encoder (e.g., w2v) \rightarrow Downstream classifier

Learn an upstream representation that

- generalizes better across different attacks
- can be interpreted

Motivation

Style-Linguistics decomposition

- Style: prosody, accent, ethnicity, gender, age, emotion
- Linguistics: syllables, words, sentences

Examples

- gender difference in languages (Xia 2013)
- pronunciation of non-native speakers (Pullen 2011)
- prosody and language understanding (Cutler, Dahan, and Van Donselaar 1997)
- age effects in conversational speech (Pereira et al. 2019)
- emotional states and word choices (Lindquist, MacCormack, and Shablack 2015)

Reality

Hypothesis

The underlying style-linguistics dependency of real speech in hard to model perfectly by existing TTS and VC models

Proposed modelling strategy:

- Learn dependency via self-supervised learning (SSL) using real speech
- Use the dependency embeddings for downstream supervised training

SLIM: Model architecture

Figure: Two-stage training framework of SLIM.

- Subspace representations
 - Style: first 11 layers from Wav2vec-XLSR-53-SER
 - Linguistics: 14-21 layers from Wav2vec-XLSR-53-ASR
 - Note that these were changed to WavLM-base for the ASVspoof5 challenge due to restrictions on backbones

• Subspace representations

- Style: first 11 layers from Wav2vec-XLSR-53-SER
- Linguistics: 14-21 layers from Wav2vec-XLSR-53-ASR
- Note that these were changed to WavLM-base for the ASVspoof5 challenge due to restrictions on backbones

• Stage-1 objective:

$$\mathcal{L}_{SSC} = \mathcal{L}_D + \lambda \mathcal{L}_R \tag{1}$$

$$\mathcal{L}_D = \frac{1}{T} \sum_{t=0}^{T} \|\mathbf{S}_{f,t} - \mathbf{L}_{f,t}\|_{\mathbf{F}}^2,$$
(2)

$$\mathcal{L}_{R} = \|\mathbf{S}_{f}\mathbf{S}_{f}^{\mathsf{T}} - \mathbb{I}\|_{\mathbf{F}}^{2} + \|\mathbf{L}_{f}\mathbf{L}_{f}^{\mathsf{T}} - \mathbb{I}\|_{\mathbf{F}}^{2}$$
(3)

• Subspace representations

- Style: first 11 layers from Wav2vec-XLSR-53-SER
- Linguistics: 14-21 layers from Wav2vec-XLSR-53-ASR
- Note that these were changed to WavLM-base for the ASVspoof5 challenge due to restrictions on backbones

Stage-1 objective:

$$\mathcal{L}_{SSC} = \mathcal{L}_D + \lambda \mathcal{L}_R \tag{1}$$

$$\mathcal{L}_{D} = \frac{1}{T} \sum_{t=0}^{T} \|\mathbf{S}_{f,t} - \mathbf{L}_{f,t}\|_{\mathbf{F}}^{2},$$
(2)

$$\mathcal{L}_{R} = \|\mathbf{S}_{f}\mathbf{S}_{f}^{\mathsf{T}} - \mathbb{I}\|_{\mathbf{F}}^{2} + \|\mathbf{L}_{f}\mathbf{L}_{f}^{\mathsf{T}} - \mathbb{I}\|_{\mathbf{F}}^{2}$$
(3)

• Stage-2: Standard supervised training with binary labels

• Subspace representations

- Style: first 11 layers from Wav2vec-XLSR-53-SER
- Linguistics: 14-21 layers from Wav2vec-XLSR-53-ASR
- Note that these were changed to WavLM-base for the ASVspoof5 challenge due to restrictions on backbones

Stage-1 objective:

$$\mathcal{L}_{SSC} = \mathcal{L}_D + \lambda \mathcal{L}_R \tag{1}$$

$$\mathcal{L}_{D} = \frac{1}{T} \sum_{t=0}^{T} \|\mathbf{S}_{f,t} - \mathbf{L}_{f,t}\|_{\mathbf{F}}^{2},$$
(2)

$$\mathcal{L}_{R} = \|\mathbf{S}_{f}\mathbf{S}_{f}^{\mathsf{T}} - \mathbb{I}\|_{\mathbf{F}}^{2} + \|\mathbf{L}_{f}\mathbf{L}_{f}^{\mathsf{T}} - \mathbb{I}\|_{\mathbf{F}}^{2}$$
(3)

- Stage-2: Standard supervised training with binary labels
- Trainable components
 - Subspace representations remain frozen for both stages
 - Projectors trained at stage-1 (2M); frozen at stage-2
 - Classification head trained at stage-2 (5M)

NeurIPS main results

Category	Model	ASVspoof19		ASVspoof21		In-the-wild		MLAAD-EN		#Param
		EER↓	F1↑	EER↓	F1↑	EER↓	F1↑	EER↓	$F1\uparrow$	(million)
Frozen frontend	LCNN	3.7	.834	25.5	.197	65.6	.373	37.2	.654	4
	RawNet2 PS3DT	3.0 4.5	.875	22.3	.213	37.8 29.7	.602	33.9	.676	4 N/A
	W2V-ASP	3.3	.858	19.6	.233	30.2	.705	29.1	.715	9
	WLM-ASP	0.3	.983	9.0	.426	25.4	.751	30.3	.709	9
	HUB-ASP	0.5	.975	15.4	.289	29.9	.718	31.0	.702	9
	W2V-LLGF	2.3	.936	9.4	.402	25.1	.756	27.8	.731	10
	W2V-LCNN	0.6	-	8.1	_	24.5	-	-	_	N/A
	W2V+WLM	1.8	.916	22.5	.203	30.3	.704	27.0	.739	9
	W2V+HUB	0.9	.956	14.2	.310	27.9	.737	27.6	.732	9
	WLM+HUB	0.8	.963	16.7	.269	29.2	.724	28.5	.720	9
	SSL-Fusion	0.3	.981	8.9	.419	24.2	.765	26.5	.739	10
	SLIM variants	(ours)								
	Enc _{sty}	6.7	.740	8.6	.438	29.2	.724	25.4	.756	9
	Encling	5.9	.764	9.3	.407	30.4	.708	25.0	.760	9
	Enc _{stvle+ling}	3.5	.834	9.0	.429	25.1	.757	23.9	.772	10
	Dependency	2.8	.897	20.5	.234	25.8	.750	19.8	.811	9
	Full	0.6	.969	8.3	.451	12.9	.895	13.5	.865	11
Finetuned frontend	W2V-ASP	0.3	.984	4.5	.646	18.6	.836	19.2	.817	317
	W2V-AASIST	0.2	.991	3.6	.707	17.5	.847	14.5	.856	317
	SLIM (ours)	0.2	.989	4.4	.651	12.5	.898	10.7	.892	253

Yi Zhu (yi@realitydefender.ai)

NeurIPS December, 2024 10 / 1

イロト イヨト イヨト イヨ

Reality Defender

SLIM: ASVspoof5 Results

	SSL Model	DA	Loss	B _{train}	ASV5 dev	ASV2019	ITW	ASV5 prog	ASV5 eval
	WavLM-Base	-	BCE	8	9.6	15.2	20.0	13.4	NA
Cross-model comparison	WavLM-Base (fft)	-	BCE	8	7.4	18.7	29.6	13.6	NA
	Data2vec-Base	-	BCE	8	9.6	13.7	22.8	NA	NA
	Data2vec-Base (fft)	-	BCE	8	14.6	31.1	37.6	NA	NA
	Wav2vec-Large	-	BCE	8	7.7	15.4	22.1	NA	NA
	Wav2vec-Large (fft)	-	BCE	8	18.0	25.9	35.4	NA	NA
	SLIM (WavLM)	-	BCE	8	5.2	11.1	25.7	7.1	NA
SLIM ablation	SLIM (Wav2vec)	-	BCE	8	7.7	12.9	19.2	NA	NA
	SLIM (WavLM)	RawBoost	BCE	8	2.9	9.5	10.8	3.6	NA
	SLIM (WavLM)	RawBoost+Noise+RIR	BCE	8	3.3	10.4	12.4	NA	NA
	SLIM (WavLM)	RawBoost	Focal	8	3.8	10.7	14.5	2.7	NA
	SLIM (WavLM)	RawBoost	BCE	4	3.0	7.4	10.8	2.4	5.5

Key improvement:

- -6.3% EER by applying SLIM
- -3.5% EER by adding RawBoost augmented samples
- Without SLIM, RawBoost did not work well; Other top systems used neural vocoders to expand training data

Quantifying style-linguistics mismatch

• Mismatch is quantified by the distance between style-linguistics dependency feature pairs

Figure: Cosine distance (log scale) calculated between the style and linguistics dependency features for ASVspoof2021 DF eval, In-the-wild, and MLAAD-EN.

Realit∖

Probing into misclassifications

- Dev and eval data are less intelligible (see figure below)
- 10% of eval data has more than 1 speaker identified

Choice of layers to represent style and linguistics

Layer 14-21 chosen from W2V-ASR

Figure: Spearman correlation coefficients. Blue: layers 0-10 from Wav2vec-SER to represent style information. Red: layers 14-21 from Wav2vec-ASR to represent linguistics information. Figure is from our arxiv paper.

Reality Defender

Projector architecture

Figure: Architecture of the projector module.

< □ > < 凸