

Motivation

- **Problem:** Prompt learning on large 3D models often boosts point cloud recognition performance but harms generalization.
- **Objective:** To enhance downstream 3D tasks without compromising generalization by introducing a regulation framework for prompt learning on large 3D models.

Figure 1. Motivation of our research: to promote the performances on downstream 3D tasks while maintaining good generalization of large 3D models.

Highlights

- A Regulation Framework: A plug-and-play framework with constraints (mutual agreement, text diversity, and model ensemble) to align prompt learning with general knowledge, improving both specific task performance and generalization.
- Three New Benchmarks: Created three benchmarks—base-to-new, cross-dataset, and few-shot—to test 3D domain generalization comprehensively.
- Stunning Results: Consistently increased accuracy across various models and datasets, showing superior generalization and robustness to corrupted data.

Methodology

Our framework consists of three regulation constraints: Mutual Agreement Constraint (MAC), Text Diversity Constraint (TDC), Model Ensemble Constraint (MEC)

Figure 2. The overall architecture of our point regulation constraint framework, Point-PRC.

A Prompt Learning Based Regulation Framework for Generalizable Point Cloud Analysis

Qiuhong Ke² Hongyu Sun^{1,2}

Yongcai Wang¹

¹Department of Computer Scicence, Renmin University of China, China

²Department of Data Science & AI, Monash University, Australia

Question Answering
What does a(n) {class} point cloud look like?

Question Answering
What are the identifying
point cloud?

Caption Please des {class} poir with detai

Figure 3. Illustration of diverse questions to LLMs, including GPT-3.5, GPT-4 and PointLLM.

Comparison with Related Work

Methodology

- **Prior Approaches:** Focus on task-specific improvement on specific tasks for small-size point encoders but lack systematic design for generalization in large 3D models.
- Our Contribution: First framework to integrate regulatory constraints in prompt learning for large 3D models, offering substantial generalization gains over baseline methods in 3DDG.

Evaluation Benchmarks

- Prior Benchmarks: Limited scale and scope, e.g., only ~ 10 classes shared between the source and the target domain in PointDA ans Sim-to-Real.
- Our Contribution: Designed diverse and challenging benchmarks, which contain up to 216 classes, to evaluate the generalization ability of large multi-modal 3D models.

New 3DDG Benchmarks

Base-to-New Class Generalization Benchmark

- **Feature:** Tests adaptability from familiar to unseen classes within the same dataset.
- **Description:** The model is trained on a set of base classes and evaluated on unseen new classes in five point cloud datasets (e.g., S-PB_T50_RS, ShapeNetCoreV2).
- **Purpose:** Measures the ability to generalize without direct exposure to new classes during training.

Cross-Dataset Generalization Benchmark

- Feature: Assesses transferability across different datasets and includes out-of-distribution (OOD) generalization and robustness to data corruption.
- **Description:** The model learns from a source dataset (e.g., ShapeNetV2) and is tested on entirely different target datasets. It's also evaluated on corrupted data to test robustness.
- **Purpose:** Evaluates resilience to domain shifts, different 3D object sets, and common noise/corruptions in real-world point cloud data.

Few-Shot Generalization Benchmark

- Feature: Tests model performance with limited labeled examples.
- **Description:** Models are trained with very few samples per class (e.g., 1, 2, 4, 8, or 16 shots) and tested on a full test set.
- **Purpose:** Demonstrates the capability to generalize in low-data regimes, crucial for applications with limited labeled data.

Wang Chen¹ Kang Yang¹ Deving Li¹ Jianfei Cai²

Prompt Templates to LLMs

Generation	Making Sentences
scribe a(n)	Make a meaningful sentence
nt cloud	with the following words:
Is	{class}, point cloud

Base-to-new generalization.

(a) Average over 5 datasets

				-				
Method	Base	New	HM		Method	Base	New	HM
P-CLIP [76]	75.66	23.45	35.80		P-CLIP [76]	93.23	20.22	33.23
P-CLIP2 [90]	74.11	37.84	50.10		P-CLIP2 [90]	93.98	45.21	61.05
ULIP [71]	77.32	49.01	59.99		ULIP [71]	92.80	50.07	65.05
+ RC (Ours)	82.19	61.93	70.64		+ RC (Ours)	95.03	55.27	69.89
ULIP-2 [72]	77.91	67.91	72.57	-	ULIP-2 [72]	91.77	56.47	69.92
+ RC (Ours)	83.18	76.10	79.48		+ RC (Ours)	95.30	64.83	77.17

(d) S-OBJ_BG

								_				
Method	Base	New	HM	Method	Base	New	HM		Method	Base	New	HM
P-CLIP [76]	72.82	23.00	34.96	P-CLIP [76]	76.23	20.23	31.97		P-CLIP [76]	74.78	33.92	46.61
P-CLIP2 [90]	70.07	35.08	46.75	P-CLIP2 [90]	71.40	44.39	54.74		P-CLIP2 [90]	78.27	34.58	47.97
ULIP [71]	73.20	47.17	57.37	ULIP [71]	74.13	50.80	60.29	_	ULIP [71]	89.73	71.20	79.40
+ RC (Ours)	79.47	55.20	65.15	+ RC (Ours)	79.23	65.93	71.97		+ RC (Ours)	93.03	84.10	88.34
ULIP-2 [72]	77.00	83.27	80.01	ULIP-2 [72]	78.60	76.27	77.42	_	ULIP-2 [72]	75.80	57.07	65.38
+ RC (Ours)	80.10	88.93	84.28	+ RC (Ours)	83.60	81.10	82.33		+ RC (Ours)	83.23	71.37	76.85

Figure 4. Base-to-new generalization comparison for representative large 3D models based on prompt learning.

Cross-dataset generalization.

Method	Source ShapeNetV2	ModelNet40	S-PB_T50_RS	Target S-OBJ_BG	S-OBJ_ONLY	Omni3D	Avg.
P-CLIP [76]	67.41(0.09)	33.20(1.86)	15.51(0.58)	18.59(1.40)	22.89(2.32)	0.48(0.17)	22.55(1.54)
P-CLIP2 [90] + RC (Ours)	68.93(1.43) 69.80 (2.86)	54.73(1.48) 55.37(1.78)	39.53(4.22) 39.77 (0.45)	34.30 (1.28) 34.20(0.54)	25.63 (1.16) 24.50(1.26)	8.63(2.52) 10.20 (0.40)	32.56(2.13) 32.81 (0.89)
ULIP [71] + RC (Ours)	87.33(0.95) 90.43 (0.86)	56.17(1.15) 58.00 (0.57)	26.83(2.15) 28.43 (0.68)	39.43(2.17) 40.33 (0.71)	43.53(1.32) 46.33 (1.54)	6.37(0.90) 8.20 (0.50)	34.47(1.54) 36.26 (0.80)
ULIP-2 [72] + RC (Ours)	76.70(1.37) 76.70 (1.59)	65.27(0.66) 72.10 (0.93)	40.07(0.34) 46.77 (2.43)	53.80(1.78) 59.03 (3.02)	48.53(1.72) 56.27 (0.97)	17.27(0.54) 21.80 (0.49)	44.99(1.01) 51.19 (1.57)

Figure 5. Comparison of OOD generalization in cross-dataset benchmark.

Few-shot generalization.

Experiments

(b) ModelNet40

(c) $S-PB_T50_RS$

Method	Base	New	HM	
P-CLIP [76]	61.25	19.87	30.01	
P-CLIP2 [90]	56.84	29.92	39.20	
ULIP [71]	56.73	25.80	35.47	
+ RC (Ours)	64.20	49.17	55.69	
ULIP-2 [72]	66.40	66.47	66.43	
+ RC (Ours)	73.67	74.27	73.97	

(e) S-OBJ_ONLY

(f) ShapeNetCoreV2