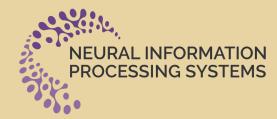
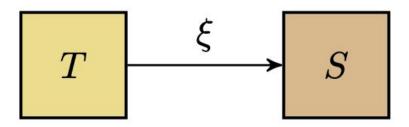
UNIVERSITY of WASHINGTON



Understanding the Gains from Repeated Self-Distillation

Divyansh Pareek Simon S. Du Sewoong Oh

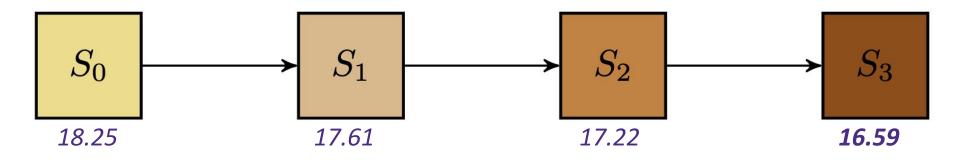
Self-distillation



 $\xi \cdot \ell(\hat{y}_T, y_S(\theta)) + (1 - \xi) \cdot \ell(y, y_S(\theta))$

- same architecture
- *same* training dataset
- only a different training objective

Self-distillation empirical gains

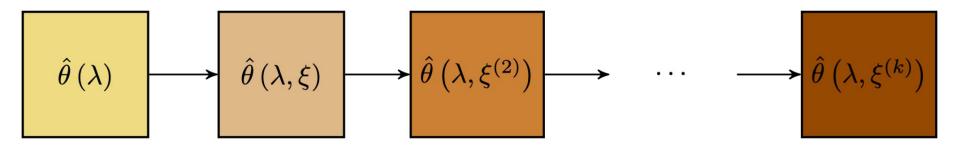


• test error on CIFAR-100

Furlanello et al., "Born-Again Neural Networks". (ICML 2018)

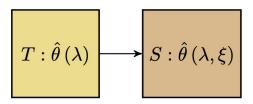
Question: How much gain is possible by repeatedly applying self-distillation?

Self-distillation under linear regression



- teacher is ridge with regularization λ .
- each step of self-distillation introduces a ξ param.

1-step result (previous work)



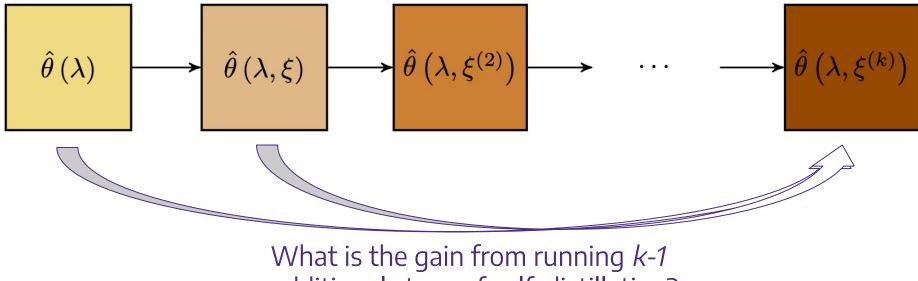
• **Result**: *optimal* S can have a <u>strictly</u> lower excess risk than *optimal* T.

$$\min_{\lambda>0} \mathrm{ExcessRisk}\left(\hat{\theta}(\lambda)\right) > \min_{\lambda>0,\xi\in\mathbb{R}} \mathrm{ExcessRisk}\left(\hat{\theta}(\lambda,\xi)\right)$$

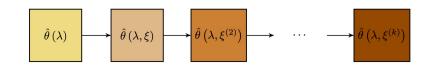
 The parameter ξ controls a bias-variance tradeoff. Increasing ξ reduces the variance term in the excess risk.

Das and Sanghavi, "Understanding Self-Distillation in the Presence of Label Noise". (ICML 2023)

Question: Gains from multi-step SD?



additional steps of self-distillation?



General result (ours)

 Main Theorem (informal): There exist a family of linear regression problem instances such that,

there exist
$$\lambda > 0, \xi^{(r)} \in \mathbb{R}^r$$
, ExcessRisk $\left(\hat{\theta}(\lambda, \xi^{(r)})\right) \leq \frac{\gamma^2}{n}$,
for all $\lambda > 0, \xi \in \mathbb{R}$, ExcessRisk $\left(\hat{\theta}(\lambda, \xi)\right) \geq c_1 \cdot \frac{r\gamma^2}{n}$,
for all $\lambda > 0$, ExcessRisk $\left(\hat{\theta}(\lambda)\right) \geq c_0 \cdot \frac{r\gamma^2}{n}$.

- *r* denotes the rank of the input (design matrix **X**).
- *n* denotes the number of samples, γ^2 denotes the noise variance.

Discussion

- Mainly two conditions define the regime of separation.
- 1. $θ^*$ is highly-aligned with one of the eigenvectors of **XX^T**. 2. The ratio of eigenvalues $λ_1(XX^T) / λ_r(XX^T)$ is Θ(1).
 - We also show the necessity of these assumptions.

• Here **X** denotes the input design matrix (with rank *r*), and θ^* denotes the ground-truth parameter vector.

Experiments

• Regression tasks from the UCI repository.

Dataset	Optimal ridge	Optimal 1-step SD	Optimal 2-step SD
Air Quality	2.01	1.99	1.06
Airfoil	1.34	1.22	1.19
AEP	0.62	0.62	0.63

Table 1: Test set MSE for optimal ridge and 1, 2-step SD.

• We also verify that the AEP dataset does not satisfy the assumptions of the theorem.

Conclusion

• Optimal multi-step self-distillation can outperform optimal 1-step (or 0-step) self-distillation by a factor of upto $\Omega(d)$.

UNIVERSITY of WASHINGTON

Poster at NeurIPS 2024: **#94147** in session 5, Friday, Dec 13 at 11am.

