#### Adaptive Domain Learning for Cross-Domain Image Denoising

Zian Qian<sup>1</sup>, Chenyang Qi<sup>1</sup>, Kalung Law<sup>2</sup>, Hao Fu<sup>2</sup>, Chenyang Lei<sup>3</sup>, Qifeng Chen<sup>1</sup>

<sup>1</sup>The Hong Kong University of Science and Technology

<sup>2</sup>SenseTime

<sup>3</sup>CAIR, HKISI-CAS







## Motivation

- An RAW denoising model trained on one sensor often does not generalize well to a different sensor.
- Collecting a new large-scaled dataset for each new sensor is very time consuming.
- The dataset collect for the training of other sensors cannot be used for the training of new sensors.

# Key Idea

- Only collect a small dataset of the new sensor (Target Domain) with around 20 pairs of RAWs.
- Utilize the existing dataset from old sensors (Source Domain) to help the training of the denoising model of the new sensor.
- Leverage useful information and remove the harmful data of the source domain during the training process.

## **ADL Pipeline: Overview**



## **ADL Pipeline: Algorithm**

Algorithm 1 Adaptive domain learning (ADL)

**Require:**  $S_1, \ldots, S_n$ : training sets of *n* source domains **Require:**  $T^{adp}$ : The small target domain dataset

**Require:**  $Q^{eval}$ : priority queue with max length M that stores the PSNR.

1: Initialize a model of  $\theta_0$  by pretraining on  $T^{adp}$ 2: for  $t \leftarrow 1$  to T do Randomly sample images S' from some domain  $S_i$ 3: Randomly sample images V' from  $T^{adp}$ , the rest part  $T^{train} = T^{adp} - V'$ Merge S' and  $T^{train}$  by  $S' = T^{train} + S'$ 4: 5:  $\theta' \leftarrow \theta_{t-1} - \alpha \nabla_{\theta_{t-1}} \mathcal{L}(S')$ 6: if  $Eval(V', \theta') > \frac{1}{m} \sum_{i=1}^{m} Q_i^{eval}$  then 7:  $\theta_t = \theta'$ 8: if Q.size() == M then 9:  $Q^{eval}.pop()$ 10:  $Q^{eval}.push(Eval(V', \theta'))$ 11: 12: else 13:  $\theta_t = \theta_{t-1}$ 14: Fine-tune the model of  $\theta_T$  on  $T^{adp}$ 

## **ADL Pipeline: Modulation**

**Convolutional Features** 



#### **Result: Quantitative**

| Method                 | G4          | GP          | IP          | N6          | <b>S6</b>   | Avg.        |
|------------------------|-------------|-------------|-------------|-------------|-------------|-------------|
| Fine-tuning            | 50.17/0.968 | 43.53/0.914 | 52.77/0.977 | 43.86/0.917 | 37.88/0.863 | 45.58/0.928 |
| BM3D [6]               | 50.08/0.968 | 42.14/0.909 | 52.39/0.972 | 43.40/0.916 | 35.52/0.855 | 44.71/0.924 |
| DIP [31]               | 46.91/0.931 | 39.88/0.896 | 48.81/0.955 | 41.73/0.906 | 35.23/0.855 | 42.51/0.909 |
| ZS-N2N [22]            | 48.86/0.941 | 41.54/0.909 | 50.06/0.968 | 41.88/0.910 | 35.07/0.856 | 43.48/0.917 |
| MZSR [29]              | 51.84/0.972 | 44.58/0.921 | 53.74/0.982 | 45.07/0.924 | 37.21/0.868 | 46.49/0.933 |
| Transfer learning [15] | 52.28/0.974 | 44.96/0.923 | 53.04/0.982 | 44.77/0.923 | 40.10/0.898 | 47.03/0.940 |
| Blind2Unblind [34]     | 51.78/0.970 | 44.91/0.919 | 54.12/0.985 | 46.02/0.928 | 38.85/0.892 | 47.14/0.939 |
| Prabhakar et al. [28]  | 51.76/0.972 | 44.68/0.919 | 53.82/0.983 | 44.92/0.922 | 38.67/0.878 | 46.34/0.933 |
| Ours                   | 52.55/0.975 | 45.18/0.923 | 54.37/0.987 | 46.13/0.932 | 40.16/0.901 | 47.68/0.944 |

| Method                 | Sony        | Fuji        | Nikon       | Canon       | Avg.        |
|------------------------|-------------|-------------|-------------|-------------|-------------|
| Fine-tuning            | 35.94/0.857 | 36.37/0.862 | 35.22/0.853 | 35.63/0.855 | 35.79/0.857 |
| <b>BM3D</b> [6]        | 35.61/0.856 | 35.88/0.857 | 35.37/0.853 | 35.07/0.852 | 35.48/0.855 |
| DIP [31]               | 31.02/0.696 | 29.44/0.611 | 30.71/0.652 | 30.53/0.641 | 30.42/0.650 |
| ZS-N2N [22]            | 32.15/0.724 | 30.39/0.632 | 30.46/0.643 | 31.34/0.707 | 31.09/0.677 |
| MZSR [29]              | 36.21/0.861 | 36.98/0.866 | 36.14/0.860 | 35.89/0.857 | 36.31/0.861 |
| Transfer learning [15] | 36.92/0.864 | 37.33/0.869 | 36.49/0.862 | 35.77/0.858 | 36.63/0.863 |
| Blind2Unblind [34]     | 36.71/0.866 | 36.57/0.866 | 35.88/0.857 | 35.49/0.855 | 36.16/0.861 |
| Prabhakar et al. [28]  | 36.12/0.859 | 36.33/0.864 | 35.47/0.854 | 35.72/0.857 | 36.01/0.861 |
| Ours                   | 37.28/0.871 | 37.58/0.872 | 36.74/0.866 | 36.45/0.868 | 37.01/0.868 |

### **Result: Ablation Study**

| ADL          | ISO          | Type         | Pre          | Dyn          | Sony        | Fuji        | Nikon       | Canon        |
|--------------|--------------|--------------|--------------|--------------|-------------|-------------|-------------|--------------|
| $\checkmark$ | $\checkmark$ | $\checkmark$ |              | $\checkmark$ | 36.15/0.858 | 36.44/0.859 | 36.52/0.861 | 36.00/ 0.857 |
| $\checkmark$ |              | $\checkmark$ | $\checkmark$ | $\checkmark$ | 37.13/0.868 | 37.41/0.871 | 36.66/0.860 | 36.27/0.857  |
| $\checkmark$ | $\checkmark$ |              | $\checkmark$ | $\checkmark$ | 36.81/0.862 | 36.93/0.864 | 36.46/0.858 | 36.11/0.855  |
|              | $\checkmark$ | $\checkmark$ | $\checkmark$ |              | 35.88/0.855 | 36.14/0.856 | 35.97/0.856 | 34.69/0.788  |
| $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |              | 36.89/0.866 | 37.41/0.871 | 36.42/0.862 | 36.23/0.861  |
| $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | 37.28/0.871 | 37.58/0.872 | 36.74/0.866 | 36.45/0.864  |



## **Result: Analysis**

| Dataset Sensor Zhang et al. |           |       | Single |       | Multiple |       |
|-----------------------------|-----------|-------|--------|-------|----------|-------|
|                             |           |       | FT     | ADL   | FT       | ADL   |
| 4                           | GP        | 45.36 | 45.47  | 45.62 | 45.32    | 45.83 |
| SIDD                        | <b>S6</b> | 43.17 | 43.45  | 43.44 | 42.66    | 43.69 |
|                             | IP        | 54.93 | 55.24  | 55.37 | 55.11    | 55.68 |
| ELD                         | Sony      | 44.86 | 44.93  | 44.98 | 44.68    | 45.17 |
|                             | Nikon     | 43.21 | 43.26  | 43.34 | 42.96    | 43.54 |

#### Analysis on Calibration methods

| Sansor | Base        | Base Base+  |             | Base+Harmful2 |             |
|--------|-------------|-------------|-------------|---------------|-------------|
| School | FT          | FT          | ADL         | FT            | ADL         |
| Sony   | 35.01/0.805 | 34.59/0.772 | 35.13/0.812 | 19.06/0.216   | 34.99/0.808 |
| Fuji   | 34.97/0.806 | 34.69/0.771 | 35.21/0.823 | 20.14/0.244   | 35.06/0.807 |
| Nikon  | 34.68/0.782 | 34.42/0.765 | 35.85/0.853 | 21.26/0.297   | 34.62/0.782 |
| Canon  | 34.76/0.794 | 34.37/0.752 | 34.88/0.797 | 21.17/0.268   | 34.71/0.792 |

Analysis on Harmful Data

### **Result: Qualitative**



# Thank you!