

TALOS: Enhancing Semantic Scene Completion via Test-time Adaptation on the Line of Sight

NeurIPS 2024

Hyun-kurl Jang*, Jihun Kim*, Hyeokjun Kweon* and Kuk-Jin Yoon

Visual Intelligence Laboratory, KAIST

TION

ROCESSING SYSTEMS

Introduction

- LiDAR Semantic Scene Completion (SSC)
 - Aim to solve semantic segmentation & point cloud completion task at once

Motivation

- Observations from different moment for SSC prediction
 - Observation at one moment can be a clue for SSC prediction at the other moment.
 - We propose a test-time adaptation approach, self-enhancing the SSC model using this idea.

- Test-time Adaptation via Line of Sight (TALoS)
 - We apply a transformation to point cloud from another moment mark occupied in voxels.
 - We use the Line of Sight to identify which voxels should not be occupied.
 - Generated binary completion map serves as supervision for enhancing completion.

- Extension for semantic perception
 - We measure reliability of prediction and utilize only reliable points for pseudo-GT.
 - We obtain pseudo-GT from the current and another moment, then aggregate them.
 - Final pseudo-GT serves as supervision for addressing perception of surroundings.

- Dual optimization scheme for gradual adaptation
 - We propose dual optimization scheme to effectively adapt the model.
 - Our approach involves two models: \mathcal{F}^{M} for instant adaptation, \mathcal{F}^{G} for gradual adaptation.

- Dual optimization scheme for gradual adaptation
 - We simply utilize current and previous moment for updating \mathcal{F}^{M} .
 - We initialize \mathcal{F}^M every moment and discard it at the end of the moment.

- Dual optimization scheme for gradual adaptation
 - The guidance from future observations can be more important and valuable than the past.
 - We delay the update until future observations become available.

- Dual optimization scheme for gradual adaptation
 - Once \mathcal{F}^{G} arrives at next moment (which was future at prediction), the update is performed.
 - We initialize \mathcal{F}^{G} only at the first step and continuously utilize it for prediction.

- Dual optimization scheme for gradual adaptation
 - For each moment, results \mathbf{p}_i^M and \mathbf{p}_i^G from \mathcal{F}^M and \mathcal{F}^G are unified into a single prediction.
 - We use \mathbf{p}_i^M as a base, while trusting \mathbf{p}_i^G only for the static categories.

Experimental Results

• Quantitative Analysis

Methods	mloU	cloU	car	bicycle	motorcycle	truck	other-vehicle	person	bicyclist	motorcyclist	road	parking	sidewalk	other-ground	building	fence	vegetation	trunk	terrain	pole	traffic-sign
SSA-SC [6]	23.5	58.8	36.5	13.9	4.6	5.7	7.4	4.4	2.6	0.7	72.2	37.4	43.7	10.9	43.6	30.7	43.5	25.6	41.8	14.5	6.9
JS3C-Net [5]	23.8	56.6	33.3	14.4	8.8	7.2	12.7	8.0	5.1	0.4	64.7	34.9	39.9	14.1	39.4	30.4	43.1	19.6	40.5	18.9	15.9
S3CNet [16]	29.5	45.6	31.2	41.5	45.0	6.7	16.1	45.9	35.8	16.0	42.0	17.0	22.5	7.9	52.2	31.3	39.5	34.0	21.2	31.0	24.3
SCPNet [3]	36.7	56.1	46.4	33.2	34.9	13.8	29.1	28.2	24.7	1.8	68.5	51.3	49.8	30.7	38.8	44.7	46.4	40.1	48.7	40.4	25.1
TALoS	37.9	60.2	46.4	34.4	36.9	14.0	30.0	30.5	27.3	2.2	73.0	51.3	53.6	28.4	40.8	45.1	50.6	38.8	51.0	40.7	24.4

	Loss fur	nctions	Dual optimiz	ation scheme	Metrics			
	COMP	SEM	MOMENT	GRADUAL	mIoU	cIoU		
Baseline					37.56	50.24		
A	\checkmark		\checkmark		37.97	52.81		
В		\checkmark	\checkmark		38.35	52.47		
С	\checkmark	\checkmark	\checkmark		38.38	52.95		
D	✓	\checkmark		\checkmark	38.81	55.94		
E (Ours)	✓	\checkmark	\checkmark	\checkmark	39.29	56.09		

COMP & SEM: use of loss function, MOMENT & GRADUAL: use of \mathcal{F}^M and \mathcal{F}^G

PROCESSING SYSTEMS

Experimental Results

Qualitative Analysis •

