Conditional Synthesis of 3D Molecules with Time Correction Sampler

Hojung Jung*, Youngrok Park*, Laura Schmid, Jaehyeong Jo, Dongkyu Lee, Bongsang Kim, Se-Young Yun[†], Jinwoo Shin[†]

The Challenge of Targeted Molecule Design

- Discovering novel molecules with specific properties is crucial for drug discovery and materials science.
- Existing conditional generation methods often struggle to balance target property matching with generating valid and stable molecular structures.

Online Guidance: Training-Free Property Control

- Online Guidance (OG): Recent approaches like DPS (Chung et al, 2022) enable conditional diffusion without labeled pairs $(\mathbf{x}_t, \mathbf{c})$.
- Approximate Conditional Score Estimation:

 $\nabla_{x_t} \log p(x_t \mid c) \approx \nabla_{x_t} \log p(c \mid \hat{x}_0)$ using Tweedie's Formula for \hat{x}_0 .

► LGD (Song et al, 2023) further refines this by Monte Carlo sampling \mathbf{x}_0 from $q(\mathbf{x}_0 | \mathbf{x}_t) = N(\hat{\mathbf{x}}_0, \sigma_t^2)$, providing an average over \mathbf{x}_0^i samples:

$$\nabla_{\mathbf{x}_{t}}\log\left(\mathbb{E}_{\mathbf{x}_{0}\sim p(\mathbf{x}_{0}|\mathbf{x}_{t})}p(\mathbf{c}|\hat{\mathbf{x}}_{0})\right)\approx\nabla_{\mathbf{x}_{t}}\log\left(\frac{1}{m}\sum_{i=1}^{m}\exp\left(-\mathscr{L}(\mathscr{A}(\mathbf{x}_{0}^{i}),\mathbf{c})\right)\right):=\mathbf{g}(\mathbf{x}_{t},t)$$

where \mathscr{A} is a property estimator satisfying $\mathbf{c} = \mathscr{A}(\mathbf{x}_0)$.

Guidance Incorporation:

$$d\mathbf{x}_{t} = \left[-\frac{1}{2}\beta(t)\mathbf{x}_{t} - \beta(t)(\nabla_{\mathbf{x}_{t}}\log p_{t}(\mathbf{x}_{t}) + z\mathbf{g}(\mathbf{x}_{t}, t)\right]dt + \sqrt{\beta(t)}d\bar{\mathbf{w}}_{t}$$

• However, OG can push samples off the correct data manifold, leading to unstable and invalid molecules.

Time Correction Sampler: Staying on Track

- Our novel Time Correction Sampler (TCS) addresses OG's limitations:
- 1. A trained Time Predictor, $\phi(x_t)$, predicts the effective timestep t_p of a given noisy sample x_r .
- 2. Time Correction: We modify Tweedie's formula using t_p :

$$f(\tilde{x}_t, t_p) = \frac{\tilde{x}_t + (1 - \bar{\alpha}_{t_p})S_{\theta}(\tilde{x}_t, t_p)}{\sqrt{\bar{\alpha}_{t_p}}}$$

- 3. The corrected sample is then perturbed back to the correct timestep t-1 using the forward process.
- TCS ensures that generated samples remain consistent with the learned data distribution.

{ ghwjd7281, yr-park }@kaist.ac.kr

Time-Aware Conditional Synthesis (TACS)

Overview of Time-Aware Conditional Synthesis (TACS).

- TACS integrates OG and TCS for effective conditional generation:
 - 1. Apply OG to guide the sample towards the target properties c. Δ
- 2. Use the Time Predictor to estimate the effective timestep t_p .
- 3. Apply Time Correction to ensure the sample stays on the correct manifold.
- 4. Iterate through the reverse diffusion process.

Algorithm 1 Time-Aware Conditional Synthesis (TACS)

Input: Total number of diffusion timesteps T, online guidance strength z, target condition c, diffusion model θ , time predictor ϕ , time-clip window size

1: $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I}_d)$ 2: **for** t = T to 1 **do** if Online guidance then $\mathbf{g}(\mathbf{x}_t, t) = -\nabla_{\mathbf{x}_t} \mathcal{L}(\mathcal{A}(\mathbf{x}_0), \mathbf{c})$ \triangleright Online guidance from Eq. (8) $\mathbf{x}'_t \leftarrow \mathbf{x}_t + z \cdot \mathbf{g}(\mathbf{x}_t, t)$ $\phi_{\text{pred}} \leftarrow \arg \max \left(\phi(\mathbf{x}_t') \right)$ $t_{\text{pred}} \leftarrow \texttt{clip}(t_{\text{pred}}, \Delta)$ $\hat{\mathbf{x}}'_0 \leftarrow \mathsf{Tweedie}(\mathbf{x}'_t, t_{\mathsf{pred}}) \triangleright \mathsf{from Eq.}(11)$ $\mathbf{x}_{t-1} \leftarrow \texttt{forward}(\hat{\mathbf{x}}'_0, t-1) \mathrel{\triangleright} \texttt{from Eq. (1)}$ 10: $\mathbf{x}_{t-1} \leftarrow \mathsf{reverse}(\mathbf{x}_t, t) \mathrel{\triangleright} \mathsf{one} \mathsf{reverse} \mathsf{step}$ 11: by diffusion model end if 12: 13: end for

Visualization of molecules generated by TCS (top), online guidance (middle), and TACS (bottom).

Synthetic Experiment with H₃+

• The Quantum ML algorithm (VQE) calculates ground state energies for to H_3^+ providing conditional labels that leverage exact calculations for a given estimate.

• Ground State Energy: $E_0 \leq \frac{\langle \psi(\boldsymbol{\theta}) | \hat{H} | \psi(\boldsymbol{\theta}) \rangle}{\langle \varphi \rangle}$

Zeroth-Order Gradient:

QM9 Dataset Experiment

	$\Delta\epsilon$ (meV)				QM9	
Method	MAE	MS (%)	Valid (%)	Method	Similarity \uparrow	MS (%)
II bound	1/6/-/			cG-SchNet	0.499 ± 0.002	-
U-Doulla	1404±4	-	-	Conditional EDM	0.671 ± 0.004	-
EDM	673 ± 7	81.8 ± 0.5	90.9 ± 0.3	TCS (Ours)	0.792±0.077	90.42
EEGSDE	539 ± 5	$80.1 {\pm} 0.4$	$90.5 {\pm} 0.3$	TACS (Ours) ($z = 0.01$)	$0.694{\pm}0.001$	90.45
OG	95.2 ±4	$31.3 {\pm} 0.7$	61.9 ± 3.4	TACS (Ours) ($z = 0.05$)	$0.695 {\pm} 0.003$	90.02
TCS(ours)	501+1	01 0 +0 <i>1</i>	96 0+0 2	TACS (Ours) ($z = 0.1$)	0.713 ± 0.087	90.28
				EEGSDE ($s = 0.1$)	$0.547 {\pm} 0.002$	74.07
TACS(ours)	$332^{+}\pm3$	$88.8 {\pm} 0.6$	93.9 ± 0.3	EEGSDE $(s = 0.5)$	0.600 ± 0.002	74.67
L-bound	65	-	-	EEGSDE $(s = 1.0)$	$0.540 {\pm} 0.029$	90.44

Table1: Target Quantum Property

• TACS achieves the **lowest** MAE with high molecular stability and validity, consistently reaching the Pareto front by balancing stability and precise property targeting.

