Selective Generation for Controllable Language Models

Minjae Lee^{1*}, Kyungmin Kim^{1*}, Taesoo Kim², Sangdon Park¹

¹**POSTECH**, ²**Georgia Tech** [∗]Equal contribution

Motivation

▶ Selective classification is a **certified** risk control method, which rejects instances as needed, to grant a **desired risk** ε with **high probability** $1 - \delta$.

Motivation

Motivation

Motivation

Motivation

Motivation

Motivation

Motivation

Motivation

Motivation

Motivation

Motivation

Inference Phase

IDK...

Motivation

Classification

Motivation

Classification

Motivation

Motivation

Motivation

▶ **Selective prediction** is also important to be applied to **generative tasks**. ▶ However, unlike exact match (EM) in **classification**, it is difficult to define a **correctness metric**.

 \implies We employ **textual entailment**: $E_{\text{true}}(\mathbf{y}) := {\hat{\mathbf{y}}} \in \mathcal{Y} | \hat{\mathbf{y}}$ implies \mathbf{y} .

Why Semi-Supervised Learning?

Motivation

 \triangleright We can avoid *metric misalignment* in generation by leveraging entailment. ▶ However, labeling is expensive.

Why Semi-Supervised Learning?

Motivation

▶ We can avoid *metric misalignment* in generation by leveraging entailment. ▶ However, labeling is expensive.

> \implies We leverage question-answering pairs without entailment via **semi-supervised learning** (SSL).

Method

With the previously defined **textual entailment** $E_{true}(\mathbf{y})$, We can define **FDR-E**, the false discovery rate with respect to the textual entailment relation, as follows:

$$
\mathbb{P}\{G(\mathbf{x}) \notin E_{\text{true}}(\mathbf{y}) \mid \hat{S}(\mathbf{x}) \neq \text{IDK}\}\
$$

Method

$$
\underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{G(\mathbf{x}) \notin E_{\text{true}}(\mathbf{y})\}}_{(A)} = \underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{v=1\}}_{(B)} \underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{e=0\}}_{(C)} + \underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{v=0\}}_{(D)} \underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{e=0\}}_{(E)}
$$

Method

$$
\underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{G(\mathbf{x}) \notin E_{\text{true}}(\mathbf{y})\}}_{(A)} = \underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{v=1\}}_{(B)} \underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{e=0\}}_{(C)} + \underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{v=0\}}_{(D)} \underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{e=0\}}_{(E)}
$$

Method

$$
\underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{G(\mathbf{x}) \notin E_{\text{true}}(\mathbf{y})\}}_{(A)} = \underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{v=1\}}_{(B)} \underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{e=0\}}_{(C)} + \underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{v=0\}}_{(E)}
$$

Method

$$
\underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{G(\mathbf{x}) \notin E_{\text{true}}(\mathbf{y})\}}_{(A)} = \underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{v=1\}}_{(B)} \underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{e=0\}}_{(E)} + \underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{v=0\}}_{(D)}
$$

Method

$$
\underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{G(\mathbf{x}) \notin E_{\text{true}}(\mathbf{y})\}}_{(A)} = \underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{v = 1\}}_{(\mathbf{E})} \underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{e = 0\}}_{(C)} + \underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{v = 0\}}_{(D)}
$$

Method

$$
\underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{\mathbf{G}(\mathbf{x})\mathbf{F}_{\hat{D}_{\hat{S}}}\{\mathbf{E}=\mathbf{0}\}}_{\mathbf{E}}(y)\}=\underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{v=1\}}_{\mathbf{B}}\underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{e=0\}}_{\mathbf{B}}+\underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{v=0\}}_{\mathbf{D}}
$$

Method

Lemma 1

(E) is decomposed as follows:

$$
\underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{e=0\}}_{(E)} = \underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{e=0,\hat{e}=1\}}_{\text{FER}} - \underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{e=1,\hat{e}=0\}}_{\text{FNER}} + \underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{\hat{e}=0\}}_{\text{NER}}.
$$

Method

Method

Entailment Set Learning

 A_{FER} returns \hat{E} which controls the FER of pseudo-labeled examples, *i.e.*,

$$
\mathbb{P}\{\mathcal{R}_{\mathsf{FER}}(\hat{E}) \le \varepsilon_E\} \ge 1 - \delta_E.
$$

▶ We use \hat{E} as a pseudo-labeling function for SSL – see our paper!

Lemma 2

If $\hat{E} \coloneqq \mathcal{A}_{\text{FER}}(\hat{\mathbf{Z}}_E)$ satisfies the above guarantee, we have

$$
\mathbb{P}_{\mathcal{D}}\{e=0\} \leq \varepsilon_E-L_{\mathsf{Binom}}(\hat{k};|\hat{\mathbf{Z}}_E|, \delta_E'/2) + U_{\mathsf{Binom}}(\hat{l};|\hat{\mathbf{Z}}_U|, \delta_S')=:U_{\mathsf{SSL}}
$$

 \blacktriangleright We find an optimal ε_E that minimizes $U_{\sf SSL}$, resulting $U_{\sf SSL}^{\sf OPT}$ – see our paper!

Controllable Guarantee

Method

Algorithm Our ${\sf semi-supervised}$ method ${\cal A}^{\sf Semi}_{{\sf SGen}}$ solves the following optimization problem: $\text{find}_{\hat{S} \in \mathcal{H}} \; \hat{S}$ subj. to $w_{\textsf{SL}} U_{\textsf{SL}} + w_{\textsf{SSL}} U_{\textsf{SSL}}^{\textsf{OPT}} \leq \varepsilon_S$

Theorem 1

 ${\cal A}^{{\sf Semi}}_{{\sf SGen}}$ satisfies the following controllable guarantee on the <code>FDR-E</code>, i.e.,

$$
\mathbb{P}\left\{\mathbb{P}\left\{G(\mathbf{x}) \notin E_{\text{true}}(\mathbf{y}) \mid \hat{S}(\mathbf{x}) \neq \text{IDK}\right\} \leq \hat{U}\right\} \geq 1 - \delta.
$$

Experiment

 \blacktriangleright SGen^{Semi} can capture correctness better than SGen_{EM}.

Experiment

▶ More unlabeled samples are beneficial to achieving better efficiency.

Experiment

▶ The FDR-E for \hat{S} is well controlled below ε_S , desired FDR-E, under the test environment.

Conclusion

▶ We leverage logical **entailment** and propose a novel **semi-supervised** learning approach for **selective generation**, demonstrating its theoretical and empirical efficacy.

