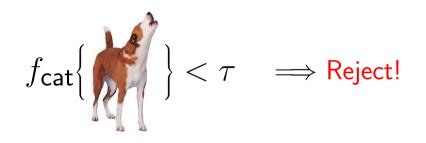
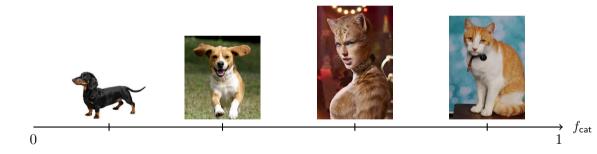
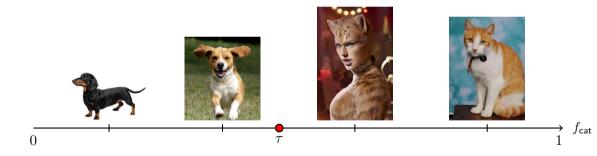

Selective Generation for Controllable Language Models


Minjae Lee^{1*}, Kyungmin Kim^{1*}, Taesoo Kim², Sangdon Park¹

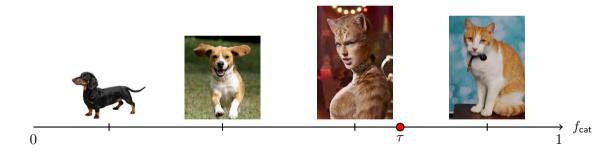
¹**POSTECH**, ²**Georgia Tech** *Equal contribution

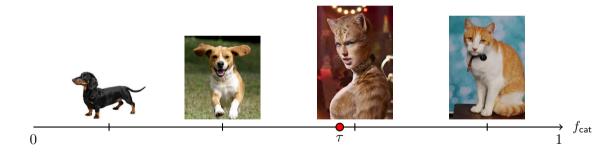


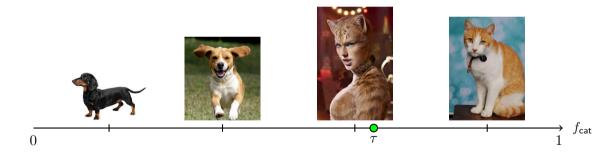
Motivation



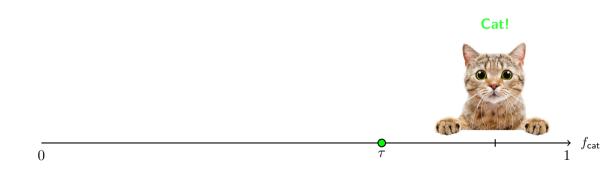
Selective classification is a certified risk control method, which rejects instances as needed, to grant a desired risk ε with high probability $1 - \delta$.


Motivation

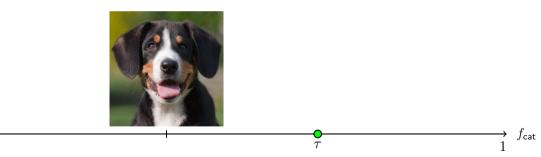

Motivation


Motivation

Motivation


Motivation

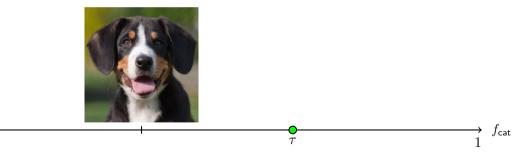
Motivation



Motivation

Motivation

0



Motivation

0

Inference Phase

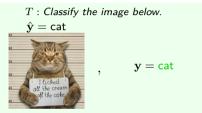
IDK...

Motivation

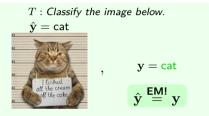
0

Motivation

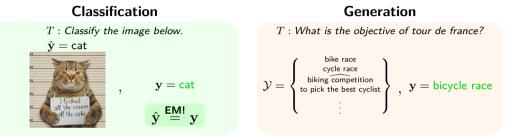
0


Inference Phase

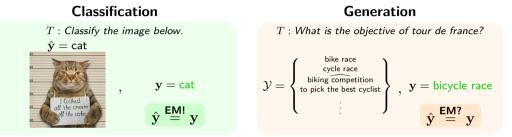
IDK...

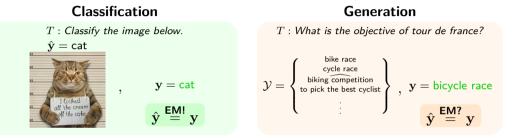

Motivation

Classification



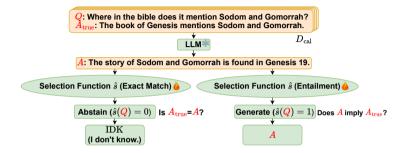
Motivation


Classification


Motivation

Motivation

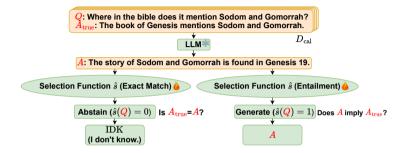
Motivation



Selective prediction is also important to be applied to generative tasks.
 However, unlike exact match (EM) in classification, it is difficult to define a correctness metric.

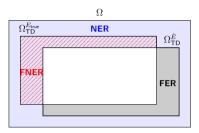
 \implies We employ *textual entailment*: $E_{true}(\mathbf{y}) := \{ \hat{\mathbf{y}} \in \mathcal{Y} \mid \hat{\mathbf{y}} \text{ implies } \mathbf{y} \}.$

Why Semi-Supervised Learning?


Motivation

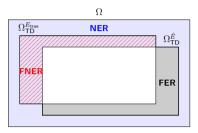
We can avoid *metric misalignment* in generation by leveraging entailment.
However, labeling is expensive.

Why Semi-Supervised Learning?

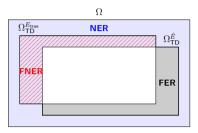

Motivation

We can avoid *metric misalignment* in generation by leveraging entailment.
However, labeling is expensive.

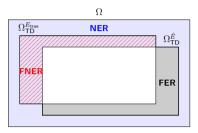
 \implies We leverage question-answering pairs without entailment via semi-supervised learning (SSL).


Method

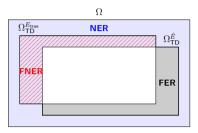
With the previously defined *textual entailment* $E_{true}(\mathbf{y})$, We can define **FDR-E**, the false discovery rate with respect to the textual entailment relation, as follows:


 $\mathbb{P}\{G(\mathbf{x}) \notin E_{\mathsf{true}}(\mathbf{y}) \mid \hat{S}(\mathbf{x}) \neq \mathtt{IDK}\}$

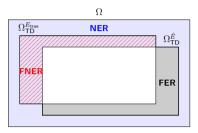
Method


$$\underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{G(\mathbf{x}) \notin E_{\mathsf{true}}(\mathbf{y})\}}_{(\mathsf{A})} = \underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{v=1\}}_{(\mathsf{B})} \underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{e=0\}}_{(\mathsf{C})} + \underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{v=0\}}_{(\mathsf{D})} \underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{e=0\}}_{(\mathsf{E})}$$

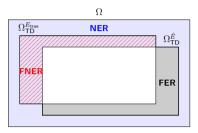
Method


$$\underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{G(\mathbf{x}) \notin E_{\mathsf{true}}(\mathbf{y})\}}_{(\mathsf{A})} = \underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{v=1\}}_{(\mathsf{B})} \underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{e=0\}}_{(\mathsf{C})} + \underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{v=0\}}_{(\mathsf{D})} \underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{e=0\}}_{(\mathsf{E})}$$

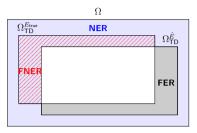
Method


$$\underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{G(\mathbf{x}) \notin E_{\mathsf{true}}(\mathbf{y})\}}_{(\mathsf{A})} = \underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{v=1\}}_{(\mathsf{B})} \underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{e=0\}}_{(\mathsf{C})} + \underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{v=0\}}_{\underbrace{\mathbb{P}_{\hat{\mathcal{D}}_{\hat{S}}}\{e=0\}}_{(\mathsf{E})}}$$

Method

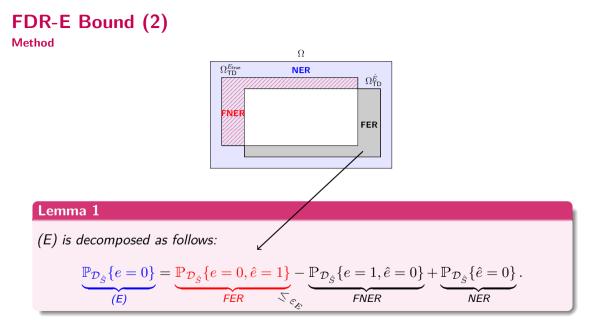

$$\underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{G(\mathbf{x}) \notin E_{\mathsf{true}}(\mathbf{y})\}}_{(\mathsf{A})} = \underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{v=1\}}_{(\mathsf{B})} \underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{e=0\}}_{(\mathsf{E})} + \underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{v=0\}}_{(\mathsf{D})}$$

Method


$$\underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{G(\mathbf{x}) \notin E_{\mathsf{true}}(\mathbf{y})\}}_{(\mathsf{A})} = \underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{v=1\}}_{(\mathsf{C})} \underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{e=0\}}_{(\mathsf{C})} + \underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{v=0\}}_{(\mathsf{D})}$$

Method

$$\underbrace{\mathbb{D}_{\mathcal{S}}\left\{\underbrace{\mathcal{Q}(\mathbf{x})}_{\mathbf{\mathcal{E}}}\notin E_{\mathsf{T}_{\mathbf{S}}}\left\{e=0\right\}}_{(\mathsf{E})} = \underbrace{\mathbb{D}_{\mathcal{S}}\left\{v=1\right\}}_{(\mathsf{B})}\underbrace{\mathbb{D}_{\mathcal{S}}\left\{e=0\right\}}_{(\mathsf{C})} + \underbrace{\mathbb{D}_{\mathcal{S}}\left\{v=0\right\}}_{(\mathsf{D})}$$


Method

Lemma 1

(E) is decomposed as follows:

$$\underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{e=0\}}_{(E)} = \underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{e=0, \hat{e}=1\}}_{FER} - \underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{e=1, \hat{e}=0\}}_{FNER} + \underbrace{\mathbb{P}_{\mathcal{D}_{\hat{S}}}\{\hat{e}=0\}}_{NER}.$$

Method

Entailment Set Learning

 $\mathcal{A}_{\mathsf{FER}}$ returns \hat{E} which controls the **FER** of pseudo-labeled examples, *i.e.*,

$$\mathbb{P}\{\mathcal{R}_{\mathsf{FER}}(\hat{E}) \le \varepsilon_E\} \ge 1 - \delta_E.$$

• We use \hat{E} as a pseudo-labeling function for SSL – see our paper!

Lemma 2

If $\hat{E} := \mathcal{A}_{FER}(\hat{\mathbf{Z}}_E)$ satisfies the above guarantee, we have

$$\mathbb{P}_{\mathcal{D}}\{e=0\} \leq \varepsilon_E - L_{\mathsf{Binom}}(\hat{k}; |\hat{\mathbf{Z}}_E|, \delta'_E/2) + U_{\mathsf{Binom}}(\hat{l}; |\hat{\mathbf{Z}}_U|, \delta'_S) \eqqcolon U_{\mathsf{SSL}}$$

▶ We find an optimal ε_E that minimizes U_{SSL} , resulting U_{SSL}^{OPT} – see our paper!

Controllable Guarantee

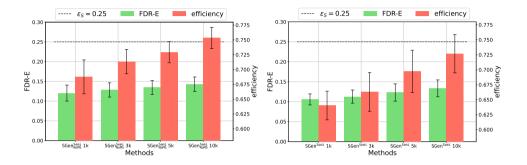
Method

Algorithm Our semi-supervised method $\mathcal{A}_{\text{SGen}}^{\text{Semi}}$ solves the following optimization problem: $\operatorname{find}_{\hat{S}\in\mathcal{H}} \hat{S}$ subj. to $w_{\text{SL}}U_{\text{SL}} + w_{\text{SSL}}U_{\text{SSL}}^{\text{OPT}} \leq \varepsilon_S$

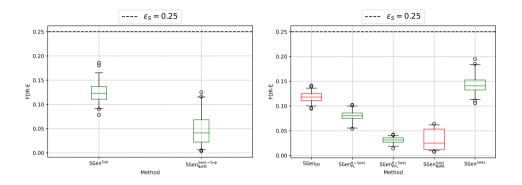
Theorem 1

 $\mathcal{A}_{SGen}^{Semi}$ satisfies the following controllable guarantee on the FDR-E, i.e.,

$$\mathbb{P}\left\{\mathbb{P}\left\{G(\mathbf{x}) \notin E_{\mathsf{true}}(\mathbf{y}) \mid \hat{S}(\mathbf{x}) \neq \mathsf{IDK}\right\} \le \hat{U}\right\} \ge 1 - \delta.$$


Experiment

Question \mathbf{x}	Who is the actor who plays Draco Ma foy?	I- When did the movie Benjamin Button come out?
$\textbf{Correct Answer } \mathbf{y}$	Thomas Andrew Felton plays Draco Malfoy in the Harry Potter movies.	The movie Benjamin Button come out December 25, 2008
Generated Answer $G(\mathbf{x})$	The actor who plays Draco Malfoy is Tom Felton. (correct)	The movie The Curious Journey of Benjamin Button was released in 2008. (correct)
SGen _{EM}	rejected	rejected
SGen ^{Semi} (ours)	accepted	accepted


► SGen^{Semi} can capture correctness better than SGen_{EM}.

Experiment

More unlabeled samples are beneficial to achieving better efficiency.

Experiment

▶ The FDR-E for \hat{S} is well controlled below ε_S , desired FDR-E, under the test environment.

Conclusion

We leverage logical entailment and propose a novel semi-supervised learning approach for selective generation, demonstrating its *theoretical* and *empirical* efficacy.

