Accurate and Efficient Deployment of Large Foundation Models

PhD. student Changyuan Wang Supervisor: Prof. Yansong Tang Tsinghua-Berkeley Shenzhen Institude

I. Background – Large Foundation Model

Deployment of Large foundation models:

- 1024x1024 diffusion model; 70B parameters vision-language model.
- How to deploy such large models on single 6GB iPhone 16 pro max?

I. Background – Model Compression

Quantization: replaces FP16 with quantized INT4, INT2

- Popular compression method with significant efficiency enhancement.
- 2.78x memory compression, 1.44x generate speed up but accurate drop.

Technical Parameters		Existing Metrics	Expected Metrics						
Model Parameters		7B 3500M							
Mobile Platform (iPhone 14 Pro Max)	Model Inference Speed (token/s)	50 token/s	80 token/s	Floating point x	-amax		s _w s _w	amax	
	Peak Memory Usage (GB)	e 12G After 6G quantization		r toating point x _f		7	1		Outlier
	Model Power Consumption (W)	100W	100W 50W			Rounding			
Robot Platform (Jetson Xavier)	Model Inference Speed (token/s)	10 token/s	20 token/s	Signed Int8 x _q	-128	1	1	127	
	Peak Memory Usage (GB)	12G	4G						
	Model Power Consumption (W)	20W	6W						-

III. Efficient Sampling – V-QLM

Deployment of 4-bits Large Vision-Language models :

- Conventional methods search the layer-wise rounding functions.
 - Leverage Entropy to mine cross-layer dependency for block-wise search.

Wang, Changyuan, Ziwei Wang, Xiuwei Xu, Yansong Tang, Jie Zhou, and Jiwen Lu. "Q-VLM: Post-training Quantization for Large Vision-Language Models." (NeurIPS), 2024. (GitHub **33** stars.)

III. Efficient Sampling – V-QLM

Experiments:

We compresses the memory by 2.78x and increase the generate speed by 1.44x about 13B LLaVA model without performance degradation on diverse multimodal reasoning tasks.

Q INT4 AWQ Animals get their food by digesting other organisms. But in the 1950s, scientists discovered that animals can make their own food. Fromia monilis cells use chemosynthesis to make their food. The answer is A.

Q INT4 O-VLM

Can Fromia monilis cells make their own food? Options: (A) yes (B) no Today, many scientists classify organisms into six broad groups, called kingdoms. The table below shows some traits used to describe each kingdom. Fromia monilis is an animal. Animal cells cannot make their own food. The answer is B.

	Bacteria	Archaea	Protists	Fungi	Animals	Plants
How many cells do they have?	one	one	one or many	one or many	many	many
Do their cells have a nucleus?	no	no	yes	yes	yes	yes
Can their cells make food?	some species can	some species can	some species can	no	no	yes

	Bite	Method	Subject			Co	Average		
	DIIS		NAT	SOC	LAN	TXT	IMG	NO	Average
LLaVA-7B	FP	-	89.39	96.06	85.64	88.71	87.65	88.50	89.81
	W6A6	AWQ	85.39	92.01	83.27	84.80	83.54	85.99	86.23
		QLoRA	88.45	94.71	84.45	87.63	86.07	87.87	88.43
		Q-VLM	89.43	95.73	84.00	88.71	87.51	87.25	89.34
	W4A4	AWQ	74.33	72.22	74.82	73.41	67.13	77.98	74.02
		QLoRA	77.53	75.48	79.18	76.64	70.70	81.95	77.53
		Q-VLM	80.86	75.93	80.73	80.01	72.48	83.90	79.79
LLaVA-13B	FP	-	90.19	93.14	87.09	89.39	87.06	89.83	90.00
	W6A6	AWQ	88.03	92.60	84.00	86.02	85.18	86.41	87.57
		QLoRA	88.87	92.89	85.64	87.59	86.56	87.53	88.87
		Q-VLM	89.54	93.18	86.50	88.12	87.01	88.85	89.70
	W4A4	AWQ	80.71	70.61	78.49	79.46	70.76	81.82	77.91
		QLoRA	79.62	71.43	82.45	78.25	68.42	85.30	78.64
		Q-VLM	82.55	73.32	83.18	81.03	70.82	86.74	80.78

layer-wise search

block-wise search

Table 2: Comparisons with the state-of-the-arts post-training quantization methods for LLaVA-v1.3 and MoE-LLaVA models across bitwidth setting.Results (accuracy) on Science QA dataset. Question classes: NAT = natural science, SOC = social science, LAN = language science, TXT = text context, IMG = image context, NO = no context.

Method	FP			W8A8			W4A4		
	Time	Memory	Accuracy	Time	Memory	Accuracy	Time	Memory	Accuracy
QLoRA				16.7h	16.5G	89.32	17.0h	10.7G	78.64
AWQ	12.9h	24.0G	90.00	11.2h	17.2G	88.94	8.9h	11.2G	77.91
Q-VLM				11.2h	15.7G	89.82	8.9h	9.6G	80.78

Table 4: Comparisons with the state-of-the-arts post-training quantization methods for LLaVA-v1.3-13B models about inference time, memory and accuracy in Science QA dataset.

⁵

Thanks for your attention !

PhD. student Changyuan Wang Supervisor: Yansong Tang Tsinghua-Berkeley Shenzhen Institude