
Generalize or Detect? Towards Robust Semantic 
Segmentation Under Multiple Distribution Shifts

Zhitong Gao1,2, Bingnan Li1, Mathieu Salzmann2, Xuming He1,3

1 ShanghaiTech University 2 EPFL
3 Shanghai Engineering Research Center of Intelligent Vision and Imaging



Background Semantic Segmentation Under Distribution Shifts.

Domain Generalization (DG) Techniques focus on generalizing to covariate shifts.

- e.g., different weather or object attributes.

Out-of-distribution (OOD) Detection Techniques focus on detecting semantic shifts. 

- e.g., anomalies or novel objects.

Training set (Eg. Cityscapes) Test image with covariate 
shifts (Eg. ACDC)

Test image with semantic 
shifts (Eg. SMIYC)
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Test image with both 
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Covariate Shift

Semantic Shift

Can a model jointly handle both kinds of distribution shift?



Challenges Semantic Segmentation Under Multiple Distribution Shifts.

Domain Generalization (DG) Techniques fail to identify unknown objects.

Out-of-distribution (OOD) Detection Techniques fail to generalize to unknown domains. 

Simple Combination: fail to distinguish two distribution shifts in object level.
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Our Goal Semantic Segmentation Under Multiple Distribution Shifts.

We jointly study both semantic and covariate shifts, so that models can:

• generalize effectively to covariate-shift regions, and

• precisely detect semantic-shift regions.
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Main Idea

1. Augment training images with various semantic and covariate shifts at both 

image and object levels in a coherent way.

• -> Coherent Generative-based Augmentation (CG-Aug)

2. Fully leverage the augmented data, so that the model can distinguish between 

the two types of distribution shifts and respond appropriately to each type.

• -> Two-stage noise-aware training.



Coherent Generative-based Augmentation

Generative Model !
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Text Prompt
e.g., Time, Weather, 

Place, OOD

Stage 1: Zero-Shot Semantic-to-Image Generation:
A. Cut-and-paste the semantic mask of novel objects to the 

training labels.

B. Semantic-to-image generation via a pretrained generative 

model (E.g. ControlNet).

Stage 2: Automatic filter low-quality synthetic data.



Two-Stage Noise-Aware Training
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based on backbone features.
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1. Learnable Uncertianty Function: 2. Relative Contrastive Loss:
Push uncertinty score farther Pull uncertinty score closer

- Initialize as energy score.

Learnable 
Projection



Two-Stage Noise-Aware Training
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Indicates whether a pixel i is selected. 
Determined via ‘small loss’ criterion.

Overall Loss:



Experimental Setup
• Implementation: DeepLabv3+ and Mask2Former. 
• Datasets:
• Training set: Cityscapes.
• Test set (below): All contain images with both semantic and domain shifts.

Road Anomaly SMIYC -RA21 SMIYC -RO21 MUADACDC-POC

OOD detection performance

• Metrics: AUROC, AP, FPR@95, mAcc, mIoU

Both OOD detection and DG performance.



Results on Anomaly Segmentation Benchmarks

We achieve SOTA anomaly segmentation results with both backbones.



Results on ACDC-POC and MUAD

Our method achieves the best results in both anomaly segmentation (OOD 
detection) and domain-generalized semantic segmentation.



Visualization of Uncertainty Maps

Our method produces semantic-exclusive uncertainty map.



Ablation Study



Ablation Study



Ablation Study

Please refer to our paper for further analysis and experimental results.



Thanks for listening !

CodePaper

For more information please refer to our paper and code.


