

Generalize or Detect? Towards Robust Semantic Segmentation Under <u>Multiple Distribution Shifts</u>

Zhitong Gao^{1,2}, Bingnan Li¹, Mathieu Salzmann², Xuming He^{1,3}

¹ShanghaiTech University ²E

ity ² EPFL

³ Shanghai Engineering Research Center of Intelligent Vision and Imaging

Background Semantic Segmentation Under Distribution Shifts.

Domain Generalization (DG) Techniques focus on generalizing to covariate shifts.

- e.g., different weather or object attributes.

Out-of-distribution (OOD) Detection Techniques focus on <u>detecting</u> semantic shifts.

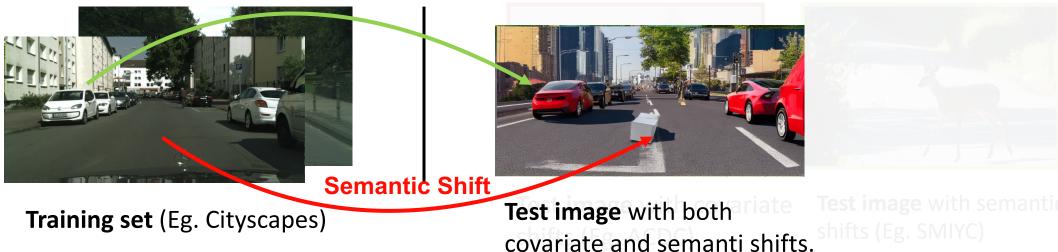
- e.g., anomalies or novel objects.

Training set (Eg. Cityscapes)

Test image with covariate shifts (Eg. ACDC)

Test image with semantic shifts (Eg. SMIYC)

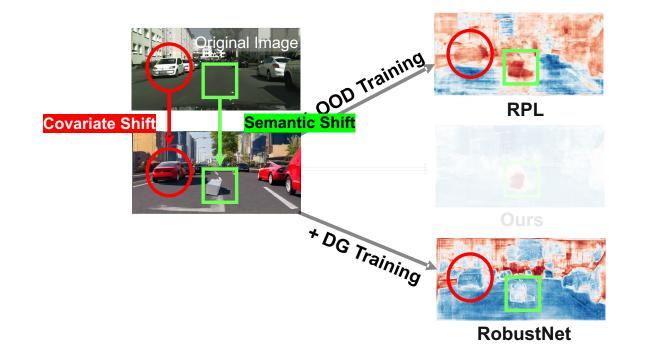
Background Semantic Segmentation Under Distribution Shifts.


Domain Generalization (DG) Techniques focus on generalizing to covariate shifts.

- e.g., different weather or object attributes

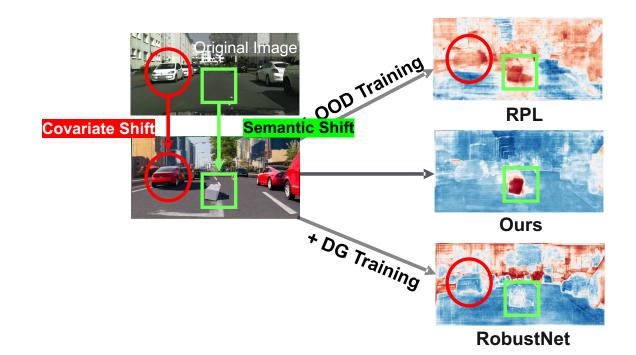
Out-of-distribution (OOD) Detection Techniques focus on <u>detecting</u> semantic shifts.

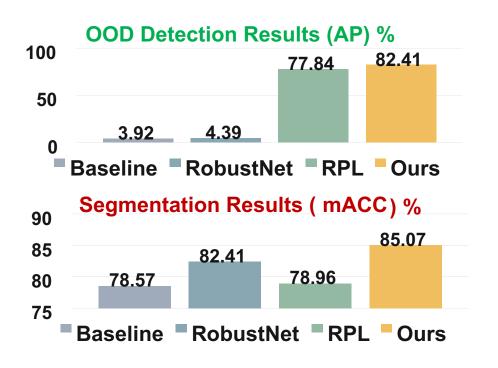
Can a model jointly handle both kinds of distribution shift?



Challenges Semantic Segmentation Under <u>Multiple</u> Distribution Shifts.

Domain Generalization (DG) Techniques fail to identify unknown objects.

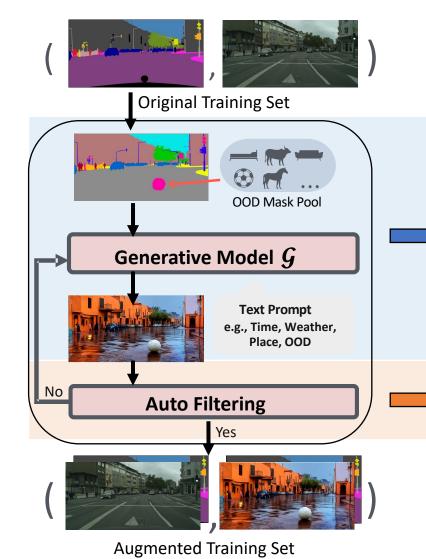

- Out-of-distribution (OOD) Detection Techniques fail to generalize to unknown domains.
- Simple Combination: fail to distinguish two distribution shifts in object level.



Our Goal Semantic Segmentation Under <u>Multiple</u> Distribution Shifts.

We jointly study both semantic and covariate shifts, so that models can:

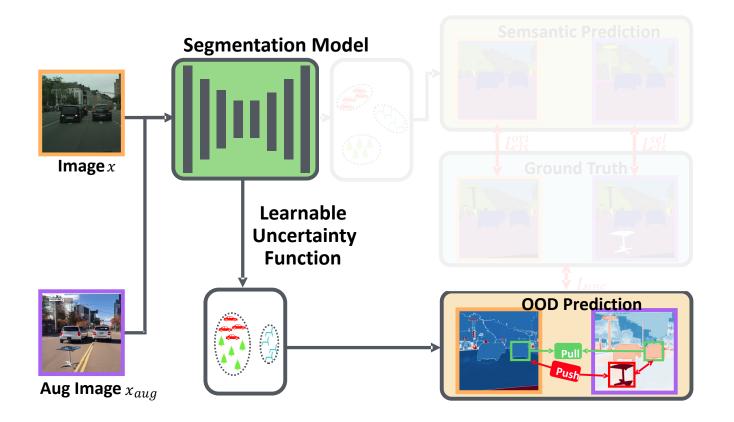
- generalize effectively to covariate-shift regions, and
- precisely detect semantic-shift regions.

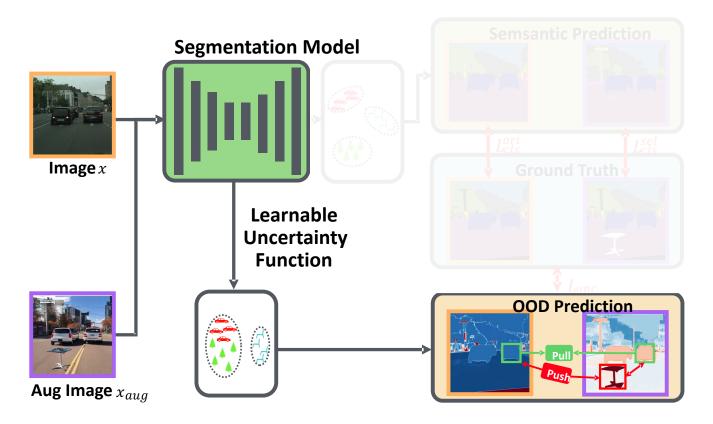


Main Idea

- Augment training images with <u>various</u> semantic and <u>covariate</u> shifts at both image and object levels in a <u>coherent</u> way.
 - -> Coherent Generative-based Augmentation (CG-Aug)

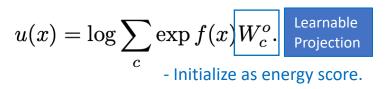
- 2. Fully leverage the augmented data, so that the model can **distinguish** between the two types of distribution shifts and **respond appropriately** to each type.
 - -> Two-stage noise-aware training.


Coherent Generative-based Augmentation

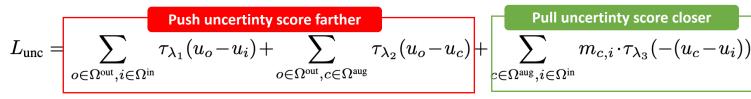

Stage 1: Zero-Shot Semantic-to-Image Generation:

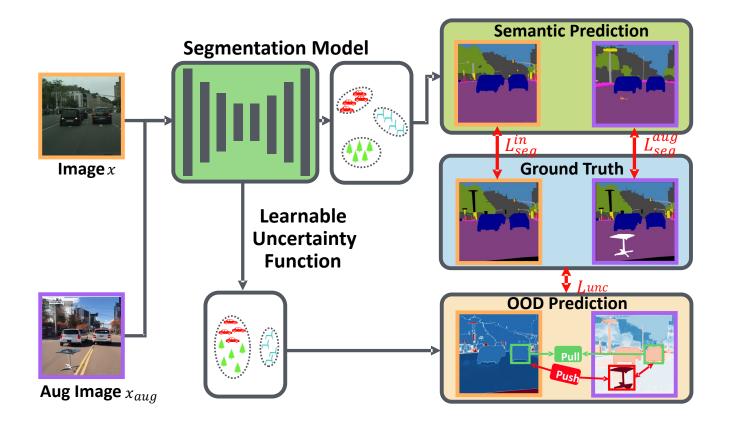
- A. Cut-and-paste the semantic mask of novel objects to the
 - training labels.
- **B.** Semantic-to-image generation via a pretrained generative model (E.g. ControlNet).

Stage 2: Automatic filter low-quality synthetic data.

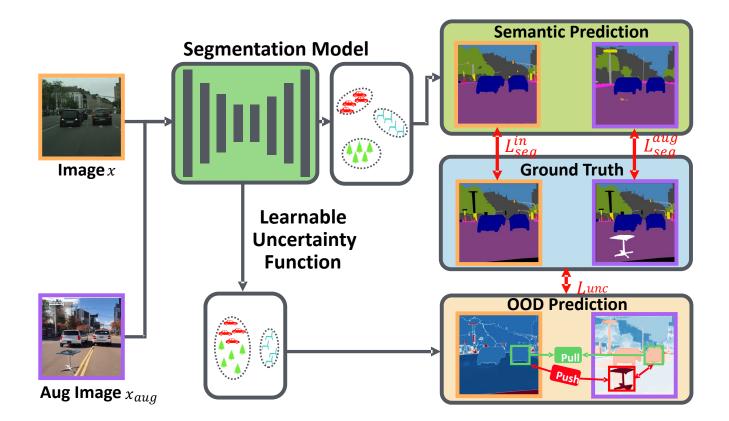


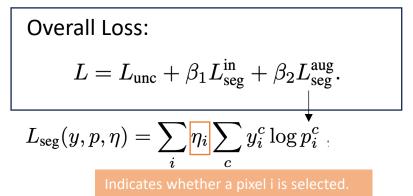
Stage 1: Train a <u>semantic-</u> <u>exclusive</u> uncertainty function based on backbone features.




Stage 1: Train a <u>semantic-</u> <u>exclusive</u> <u>uncertainty function</u> based on backbone features.

1. Learnable Uncertianty Function:


2. Relative Contrastive Loss: $\tau_{\lambda}(x) = \max(\lambda - x, 0)$


Stage 1: Train a <u>semantic-</u> <u>exclusive</u> uncertainty function based on backbone features.

Stage 2: Fintune the feature extractor to align features associated with <u>domain shifts</u>.

Stage 1: Train a <u>semantic-</u> <u>exclusive</u> uncertainty function based on backbone features.

Stage 2: Fintune the feature extractor to align features associated with <u>domain shifts</u>.

Experimental Setup

- **Implementation:** DeepLabv3+ and Mask2Former.
- Datasets:
 - Training set: Cityscapes.
 - Test set (below): All contain images with both semantic and domain shifts.

• Metrics: AUROC, AP, FPR@95, mAcc, mIoU

Results on Anomaly Segmentation Benchmarks

		Ro	oadAnon	naly	SMIY	C - RA21	SMIY	C - RO21
Method	Backbone	$ $ AUC \uparrow	AP↑	$\operatorname{FPR}_{95}\downarrow$	AP↑	$\text{FPR}_{95}\downarrow$	$ $ AP \uparrow	$\mathrm{FPR}_{95}\downarrow$
Maximum softmax [21]		67.53	15.72	71.38	27.97	72.05	15.72	16.60
ODIN [28]		-	-	-	33.06	71.68	22.12	15.28
Mahalanobis [26]		62.85	14.37	81.09	20.04	86.99	20.90	13.08
Image resynthesis [30]		-	-	-	52.28	25.93	37.71	4.70
SynBoost [13]		81.91	38.21	64.75	56.44	61.86	71.34	3.15
Maximized entropy [6]	DeepLabv3+	-	48.85	31.77	85.47	15.00	85.07	0.75
PEBAL [46]	-	87.63	45.10	44.58	49.14	40.82	4.98	12.68
Dense Hybrid [17]		-	31.39	63.97	77.96	9.81	87.08	0.24
RPL+CoroCL [31]		95.72	71.61	17.74	83.49	11.68	85.93	0.58
Ours		96.40	74.60	16.08	88.06	8.21	90.71	0.26
Mask2Anomaly [42]		-	79.70	13.45	88.7	14.60	93.3	0.20
RbA [36]	Maglz2Earman	-	85.42	6.92	90.90	11.60	91.80	0.50
M2F-EAM [18]	Mask2Former	-	69.40	7.70	93.75	4.09	92.87	0.52
Ours		97.94	90.17	7.54	91.92	7.94	95.29	0.07

Table 1: **Results on anomaly segmentation benchmarks:** RoadAnomaly, SMIYC-RA21 and SMIYC-RO21. Our method achieves the best results under both backbones (Best results in Bold).

We achieve SOTA anomaly segmentation results with both backbones.

Results on ACDC-POC and MUAD

Table 2: **Results on ACDC-POC and MUAD**. Our model achieves the best performance in both anomaly segmentation (AP \uparrow , FPR \downarrow) and domain-generalized segmentation (mIoU \uparrow , mAcc \uparrow). Anomaly segmentation methods typically perform worse than the baseline for known class segmentation, while domain generalization methods fall below the baseline on OOD detection. (Best results are in bold; results below baseline are in blue.)

Method	Backbone	Techn	ique		ACDO	C-POC			MU	AD	
		OOD	DG	AP↑	$\mathrm{FPR}_{95}\downarrow$	mIoU↑	mAcc↑	AP↑	$\mathrm{FPR}_{95}\downarrow$	mIoU↑	mAcc↑
Baseline [7]		-	-	3.92	55.50	46.89	78.57	1.34	72.78	29.47	68.63
RuleAug [45]		-	\checkmark	2.09	72.79	48.60	81.79	0.99	81.08	29.42	69.22
RobustNet [9]		-	\checkmark	4.39	62.65	47.41	82.41	2.27	58.64	32.18	72.02
PEBAL [46]	DeepLabv3+		-	20.67	14.35	45.59	81.28	7.81	47.56	29.08	66.41
RPL [31]	_		1	77.84	1.20	46.35	78.96	27.70	24.45	29.86	71.60
OOD + RuleAug [45]		1	\checkmark	80.65	1.30	46.76	73.08	20.97	20.37	27.83	63.02
Ours		✓	✓	82.41	1.01	54.12	85.07	36.08	18.74	31.33	73.13
Mask2Anomaly [42]			-	73.77	3.60	47.32	83.10	39.32	41.24	23.43	61.91
OOD + RuleAug [45]	Mask2Former	1	\checkmark	82.82	0.79	50.36	82.83	25.43	41.15	26.27	67.51
Ours		 Image: A start of the start of	\checkmark	90.42	0.46	51.75	83.16	45.65	24.70	28.44	73.77

Our method achieves the best results in both anomaly segmentation (OOD detection) and domain-generalized semantic segmentation.

Visualization of Uncertainty Maps

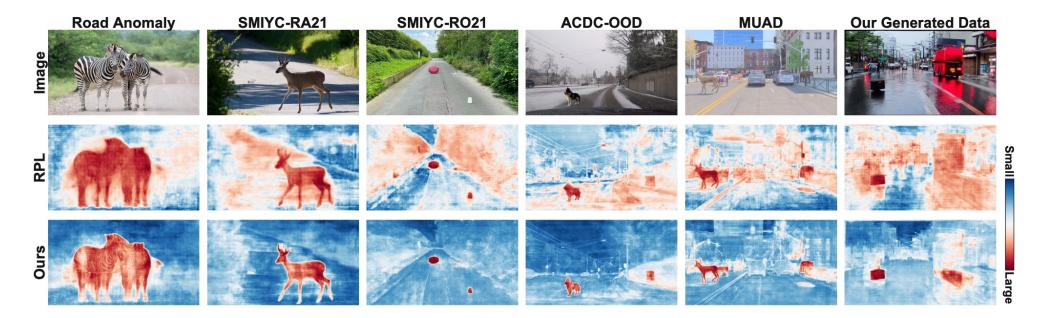


Figure 3: **Comparison of Uncertainty Maps.** Our method robustly detects anomalies under covariate shifts across five datasets (first five columns) and generated data (last column). The previous method RPL [31] failed to distinguish domain from semantic shifts, producing high uncertainty in both cases.

Our method produces semantic-exclusive uncertainty map.

Ablation Study

Table 3: **Impact of CG-Aug and Training Strategy.** The proposed coherent generative-based augmentation consistently enhances the previous OOD method, Mask2Anomaly [42] (M2A for short). Our fine-tuning strategy makes better use of the data and further boosts the performance.

		Road	Anomaly	SMIY	C-RA Val	SMIYC	-RO Val
Training	Aug.	AP↑	$\operatorname{FPR}_{95}\downarrow$	AP↑	$\operatorname{FPR}_{95}\downarrow$	AP↑	$FPR_{95}\downarrow$
M2A [42]	Default	79.70	13.45	94.50	3.30	88.60	0.30
M2A [42]	Ours	85.47	22.38	97.96	1.55	89.80	0.12
Ours	Ours	90.17	7.54	97.31	1.04	93.24	0.14

Ablation Study

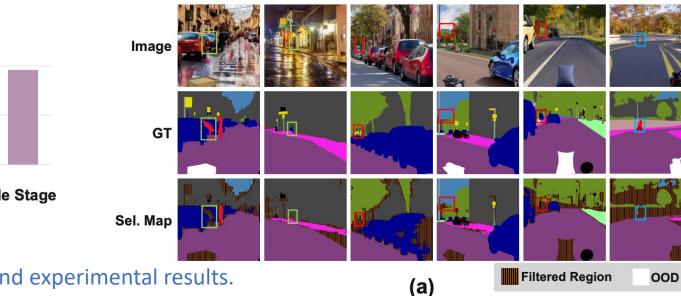
Table 3: **Impact of CG-Aug and Training Strategy.** The proposed coherent generative-based augmentation consistently enhances the previous OOD method, Mask2Anomaly [42] (M2A for short). Our fine-tuning strategy makes better use of the data and further boosts the performance.

Table 4: Ablation Study of CG-Aug. Generating data with both Semantic-shift (SS) and Domain-shift (DS) in a coherent manner achieves better results than other variations. The experiments were conducted using the Mask2Former backbone and evaluated on the RoadAnomaly dataset.

		Road	Anomaly	SMIY	C-RA Val	SMIYC	-RO Val
Training	Aug.	AP↑	$\texttt{FPR}_{95}\downarrow$	AP↑	$\operatorname{FPR}_{95}\downarrow$	AP↑	$FPR_{95}\downarrow$
M2A [42]	Default	79.70	13.45	94.50	3.30	88.60	0.30
M2A [42]	Ours	85.47	22.38	97.96	1.55	89.80	0.12
Ours	Ours	90.17	7.54	97.31	1.04	93.24	0.14

	AUC↑	AP↑	$FPR_{95}\downarrow$
POC [12] (SS)	95.43	83.66	10.33
DS or SS	95.90	87.64	9.28
DS and SS	96.47	89.08	8.16
CG-Aug (Ours)	97.94	90.17	7.54

Ablation Study


Table 3: **Impact of CG-Aug and Training Strategy.** The proposed coherent generative-based augmentation consistently enhances the previous OOD method, Mask2Anomaly [42] (M2A for short). Our fine-tuning strategy makes better use of the data and further boosts the performance.

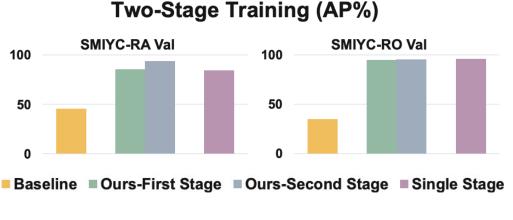

		Road	Anomaly	SMIY	C-RA Val	SMIYC	-RO Val
Training	Aug.	AP↑	$\operatorname{FPR}_{95}\downarrow$	AP↑	$\text{FPR}_{95}\downarrow$	AP↑	$\operatorname{FPR}_{95}\downarrow$
M2A [42]	Default	79.70	13.45	94.50	3.30	88.60	0.30
M2A [42]	Ours	85.47	22.38	97.96	1.55	89.80	0.12
Ours	Ours	90.17	7.54	97.31	1.04	93.24	0.14

Table 4: Ablation Study of CG-Aug. Generating data with both Semantic-shift (SS) and Domain-shift (DS) in a coherent manner achieves better results than other variations. The experiments were conducted using the Mask2Former backbone and evaluated on the RoadAnomaly dataset.

	AUC↑	AP↑	$FPR_{95}\downarrow$
POC [12] (SS)	95.43	83.66	10.33
DS or SS	95.90	87.64	9.28
DS and SS	96.47	89.08	8.16
CG-Aug (Ours)	97.94	90.17	7.54

Noise-Aware Sample Selection

Please refer to our paper for further analysis and experimental results.

Thanks for listening !

For more information please refer to our paper and code.

