Fixed Confidence Best Arm Identification in Bayesian Settings

Kyoungseok Jang¹ Junpei Komiyama² Kazutoshi Yamazaki³

¹ Università Degli Studi di Milano ² NYU ³ University of Queensland

November 15, 2024

Jang, Junpei, Yamazaki

November 15, 2024

Best-Arm Identification in a Bayesian Setting

Step 0: True mean values $\mu := (\mu_i)_{i=1}^{K}$ are **drawn** from a known prior distribution **H** before the game starts.

Step 1: While stopping condition is False

• Sample arm A_t and observe its reward r_t

Step 2: Recommend arm J based on learner's history.

Fixed-Confidence setting

• Objective: Minimize $\mathbf{E}_{\boldsymbol{\mu}\sim\boldsymbol{H}}[\tau]$ (τ : Stopping time)

• Constraint:
$$\mathbf{P}_{\mu \sim H} \left(J \neq \max_{i \in [K]} \mu_i \right) \leq \delta$$

Best-Arm Identification in a Frequentist Setting

Step 0: True mean values $\mu := (\mu_i)_{i=1}^{K}$ are **predetermined** before the game starts. **Step 1:** While stopping condition is False

• Sample arm A_t and observe its reward r_t

Step 2: Recommend arm J based on learner's history.

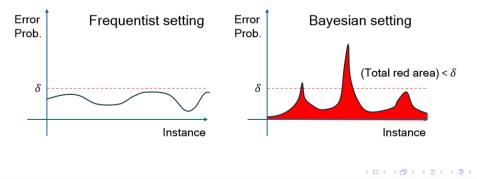
Fixed-Confidence setting

• Objective: Minimize $\mathbf{E}_{\mu}[\tau]$

• Constraint:
$$\mathbf{P}_{\boldsymbol{\mu}} \left(J \neq \max_{i \in [\mathcal{K}]} \mu_i \right) \leq \delta$$

What's the difference?

- Frequentist δ -correct algorithm: For all possible μ , error probability should be smaller than δ .
- Bayesian δ-correct algorithm: It is okay to have a larger error probability in some μ, but 'the expectation of the error probability' should be smaller than δ.



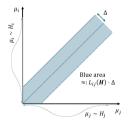
This is the first FC-BAI in Bayesian settings, and

- We found out that no Frequentist δ-correct algorithm can have the finite expected stopping time.
- **2** Lower bound of the stopping time of $\Omega\left(\frac{L(H)^2}{\delta}\right)$

Solution Devised an elimination algorithm with stopping time upper bound of $O\left(\frac{L(x)}{2}\right)$

$$\frac{L(\boldsymbol{H})^2}{\delta} \log \frac{L(\boldsymbol{H})}{\delta}$$

where L(H) is our novel 'prior-dependent sample complexity.'



5/9

Informal explanation: K = 2

- By (Garivier et al., 2016), for each instance μ = (μ₁, μ₂), the expected stopping time is lower bounded by log δ⁻¹/(μ₁-μ₂)²
- We proved that ${f P}_{{m \mu}\sim{m H}}(|\mu_1-\mu_2|\leq\epsilon)pprox {\it L}({m H})\epsilon$
- With probability $L(\mathbf{H})\epsilon$, the frequentist δ -correct algorithm spends at least $\frac{1}{\epsilon^2}$.
- Expected stopping time is at least $\frac{1}{\epsilon}$ for an arbitrary small ϵ !

Problem: The learner spends too many samples for the case when the suboptimality gap is small!

Algorithm: Successive Elimination with Early-Stopping

```
Algorithm 1 Successive Elimination with Early-
Stopping
```

```
Input: Confidence level \delta, prior H
\Delta_0 := \frac{\delta}{4L(\mathbf{H})}
Draw each arm once
Initialize the candidate of best arms \mathcal{A}(1) = [K].
t = 1
while True do
   Draw each arm in \mathcal{A}(t) once.
   t \leftarrow t + |\mathcal{A}(t)| \hat{\Delta}^{\mathrm{safe}}(t)
   for i \in \mathcal{A}(t) do
      Calculate UCB(i, t) and LCB(i, t) from (4).
      if UCB(i, t) \le \max_i LCB(j, t) then
         \mathcal{A}(t) \leftarrow \mathcal{A}(t) \setminus \{i\}.
      end if
   end for
   if |\mathcal{A}(t)| = 1 then
      Beturn arm J in \mathcal{A}(t).
   end if
   Calculate safe empirical gap
   if \hat{\Delta}^{\text{safe}}(t) < \Delta_0 then
      Return arm J which is uniformly sampled
      from \mathcal{A}(t).
   end if
end while
```

- Successive elimination-based
- Main difference:
 - Early-stopping: When the gap is small enough, stop additional sampling!
 - It is possible since the 'narrow gap event' rarely happens in Bayesian setups.

Conclusions

First FC-BAI in the bayesian setting

- Contribution 1: Frequentist δ -correct algorithms usually fail in bayesian settings.
- Contribution 2: Lower bound $\Omega\left(\frac{L(\boldsymbol{H})^2}{\delta}\right)$
- Contribution 3: Upper bound $O\left(\frac{L(H)^2}{\delta}\log\frac{L(H)}{\delta}\right)$

Future work:

- Close the gap between UB and LB
- More distributions (beside gaussians)
- Adapt other popular Frequentist FC-BAI algorithms (Track-and-Stop, Top-two type) to Bayesian FC-BAI problem.

(신문) 문

Thank you!

Please come to my poster!

Contact: ksajks@gmail.com

Full details are available in NeurIPS 2024 (QR below)

