Entropy-regularized Diffusion Policy with Q-Ensembles for Offline RL

Ruoqi Zhang, Ziwei Luo, Jens Sjölund, Thomas Schön, Per Mattsson

Offline Reinforcement Learning Learning from the dataset only

Policy:
$$a_t = \pi_{\theta}(s_t) = \arg \max_a \mathbb{E}\left[\sum_{k=0}^{\infty} \gamma^k r\right]$$

Offline Reinforcement Learning Multi-modality of the Dataset: t-SNE visualization

Figure 1. A t-SNE visualization of randomly selected 1000 states from Antmaze, Adroit and Kitchen domain. The color coding represents the return of the trajectory associated with each state.

Diffusion model as the behavior policy

Diffusion-QL [1]: Diffusion Model as the behaviour policy $\pi = \arg\min_{\pi_{\phi}} L(\phi) = \mathscr{L}_{d}(\phi) + \mathscr{L}_{q}(\phi) = \mathscr{L}_{d}(\phi) - \lambda \cdot \mathbb{E}_{s \sim \mathscr{D}, a^{0} \sim \pi_{\phi}}[Q_{\psi}(s, a^{0})]$

[1] Wang, Z., Hunt, J. J., & Zhou, M. (2022). Diffusion policies as an expressive policy class for offline reinforcement learning. arXiv preprint arXiv:2208.06193. [2] Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. ICML 2018.

Diffusion-QL [1]: Diffusion Model as the behaviour policy

 $\pi = \arg\min_{\pi_{\phi}} L(\phi) = \mathscr{L}_{d}(\phi) + \mathscr{L}_{q}(\phi) = \mathscr{L}_{d}(\phi) - \lambda \cdot \mathbb{E}_{s \sim \mathcal{D}, a^{0} \sim \pi_{\phi}}[Q_{\psi}(s, a^{0})]$

[1] Wang, Z., Hunt, J. J., & Zhou, M. (2022). Diffusion policies as an expressive policy class for offline reinforcement learning. arXiv preprint arXiv:2208.06193. [2] Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. ICML 2018.

Diffusion-QL [1]: Diffusion Model as the behaviour policy

 $\pi = \arg \min_{\pi_{\phi}} L(\phi) = \mathscr{L}_{d}(\phi) + \mathscr{L}_{q}(\phi) = \mathscr{L}_{d}(\phi) - \lambda \cdot \mathbb{E}_{s \sim \mathcal{D}, a^{0} \sim \pi_{\phi}}[Q_{\psi}(s, a^{0})]$

[1] Wang, Z., Hunt, J. J., & Zhou, M. (2022). Diffusion policies as an expressive policy class for offline reinforcement learning. arXiv preprint arXiv:2208.06193. [2] Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. ICML 2018.

В

Diffusion-QL [1]: Diffusion Model as the behaviour policy

 $\pi = \arg \min_{\pi_{\phi}} L(\phi) = \mathscr{L}_{d}(\phi) + \mathscr{L}_{q}(\phi) = \mathscr{L}_{d}(\phi) - \lambda \cdot \mathbb{E}_{s \sim \mathcal{D}, a^{0} \sim \pi_{\phi}}[Q_{\psi}(s, a^{0})]$

Our method: ${ \bullet }$

> [1] Wang, Z., Hunt, J. J., & Zhou, M. (2022). Diffusion policies as an expressive policy class for offline reinforcement learning. arXiv preprint arXiv:2208.06193. [2] Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. ICML 2018.

Β

Diffusion-QL [1]: Diffusion Model as the behaviour policy

 $\pi = \arg \min_{\pi_{\phi}} L(\phi) = \mathscr{L}_{d}(\phi) + \mathscr{L}_{q}(\phi) = \mathscr{L}_{d}(\phi) - \lambda \cdot \mathbb{E}_{s \sim \mathcal{D}, a^{0} \sim \pi_{\phi}}[Q_{\psi}(s, a^{0})]$

Our method: ${ \bullet }$

$$\pi = \arg \min_{\pi_{\phi}} L(\phi) = \mathscr{L}_{d}(\phi) + \mathscr{L}_{q}(\phi)$$
$$= \mathscr{L}_{d}(\phi) - \lambda \cdot \mathbb{E}_{s \sim \mathscr{D}, (a^{0}, \hat{a}_{i}^{1}) \sim \pi_{\phi}} [Q_{\psi}(s, a^{0})$$

[1] Wang, Z., Hunt, J. J., & Zhou, M. (2022). Diffusion policies as an expressive policy class for offline reinforcement learning. arXiv preprint arXiv:2208.06193. [2] Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. ICML 2018.

 $-\alpha \log(p(\hat{a}_i^1 | a_i^T, s_i))]$

Entropy Regularization

Diffusion-QL [1]: Diffusion Model as the behaviour policy

 $\pi = \arg\min_{\pi_{\phi}} L(\phi) = \mathscr{L}_{d}(\phi) + \mathscr{L}_{q}(\phi) = \mathscr{L}_{d}(\phi) - \lambda \cdot \mathbb{E}_{s \sim \mathcal{D}, a^{0} \sim \pi_{\phi}}[Q_{\psi}(s, a^{0})]$

Our method:

$$\pi = \arg \min_{\pi_{\phi}} L(\phi) = \mathscr{L}_{d}(\phi) + \mathscr{L}_{q}(\phi)$$
$$= \mathscr{L}_{d}(\phi) - \lambda \cdot \mathbb{E}_{s \sim \mathscr{D}, (a^{0}, \hat{a}_{i}^{1}) \sim \pi_{\phi}} [Q_{\psi}(s, a^{0})$$

[1] Wang, Z., Hunt, J. J., & Zhou, M. (2022). Diffusion policies as an expressive policy class for offline reinforcement learning. arXiv preprint arXiv:2208.06193. [2] Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. ICML 2018.

SAC[2]:
$$\pi^* = \arg \max_{\pi} \sum_{t} \mathbb{E}_{(\mathbf{s}_t, \mathbf{a}_t) \sim \rho_{\pi}} \left[r\left(\mathbf{s}_t, \mathbf{a}_t\right) + \alpha \mathcal{H}\left(\pi\left(\cdot \mid \mathbf{s}_t\right)\right) \right]$$

= $\arg \min J_{\pi}(\phi) = \mathbb{E}_{\mathbf{s}_t \sim \mathcal{D}} \left[\mathbb{E}_{\mathbf{a}_t \sim \pi_{\phi}} \left[\alpha \log \left(\pi_{\phi} \left(\mathbf{a}_t \mid \mathbf{s}_t\right)\right) - Q_{\psi}\left(\mathbf{s}_t, \mathbf{s}_t\right) \right] \right]$

 $-\alpha \log(p(\hat{a}_i^1 | a_i^T, s_i))]$

Entropy Regularization

Diffusion-QL [1]: Diffusion Model as the behaviour policy

 $\pi = \arg\min_{\pi_{\phi}} L(\phi) = \mathscr{L}_{d}(\phi) + \mathscr{L}_{q}(\phi) = \mathscr{L}_{d}(\phi) - \lambda \cdot \mathbb{E}_{s \sim \mathcal{D}, a^{0} \sim \pi_{\phi}}[Q_{\psi}(s, a^{0})]$

Our method:

$$\pi = \arg \min_{\pi_{\phi}} L(\phi) = \mathscr{L}_{d}(\phi) + \mathscr{L}_{q}(\phi)$$
$$= \mathscr{L}_{d}(\phi) - \lambda \cdot \mathbb{E}_{s \sim \mathscr{D}, (a^{0}, \hat{a}_{i}^{1}) \sim \pi_{\phi}} [Q_{\psi}(s, a^{0})$$

[1] Wang, Z., Hunt, J. J., & Zhou, M. (2022). Diffusion policies as an expressive policy class for offline reinforcement learning. arXiv preprint arXiv:2208.06193. [2] Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. ICML 2018.

 $-\alpha \log(p(\hat{a}_i^1 | a_i^T, s_i))]$

Entropy Regularization

> LCB of Qensemble

Diffusion-QL [1]: Diffusion Model as the behaviour policy

 $\pi = \arg\min_{\pi_{\phi}} L(\phi) = \mathscr{L}_{d}(\phi) + \mathscr{L}_{q}(\phi) = \mathscr{L}_{d}(\phi) - \lambda \cdot \mathbb{E}_{s \sim \mathcal{D}, a^{0} \sim \pi_{\phi}}[Q_{\psi}(s, a^{0})]$

Our method:

$$\pi = \arg \min_{\pi_{\phi}} L(\phi) = \mathscr{L}_{d}(\phi) + \mathscr{L}_{q}(\phi)$$
$$= \mathscr{L}_{d}(\phi) - \lambda \cdot \mathbb{E}_{s \sim \mathscr{D}, (a^{0}, \hat{a}_{i}^{1}) \sim \pi_{\phi}} [Q_{\psi}^{\mathsf{LCB}}(s, a)]$$
$$Q_{\psi}^{\mathsf{LCB}} = \mathbb{E}_{\mathsf{ens}} \left[Q_{\psi^{m}}(s, a) \right] - \beta \left[\sqrt{\mathbb{V}_{\mathsf{ens}}[Q_{\psi}^{\mathsf{V}}(s, a)]} \right]$$

[1] Wang, Z., Hunt, J. J., & Zhou, M. (2022). Diffusion policies as an expressive policy class for offline reinforcement learning. arXiv preprint arXiv:2208.06193. [2] Haarnoja, T., Zhou, A., Abbeel, P., & Levine, S. Soft actor-critic: Off-policy maximum entropy deep reinforcement learning with a stochastic actor. ICML 2018.

 $(a_i^0) - \alpha \log(p(\hat{a}_i^1 | a_i^T, s_i)))]$ $Q_{\psi^m}(s,a)$]

Entropy Regularization

> LCB of Qensemble

Diffusion Policy Task: Starting from 0, take two steps to seek a state with the highest reward.

Diffusion Policy Task: Starting from 0, take two steps to seek a state with the highest reward.

Figure 3. Left: Reward function and training samples Center: Training progress comparison Right: Learned Q-values curve in state 0 Take-away: Only combined entorpy+diffusion+ensembles learn a better policy and accurate Q-values. [2]

[2] Zhang, R., Luo, Z., Sjölund, J., Schön, T. B., & Mattsson, P. (2024). Entropy-regularized diffusion policy with q-ensembles for offline reinforcement learning. Neurips 2024 (Accepted).

Gym Tasks		BC	DT	CQL	IQL	IDQL-A	IQL+EDP	Diff-QL	OURS
HALFCHEETAH-MEDIUM-V2		42.6	42.6	44.0	47.4	51.0	48.1	51.1	54.9
HOPPER-MEDIUM-V2		52.9	67.6	58.5	66.3	65.4	63.1	90.5	94.2
walker2d-medium-v2		75.3	74.0	72.5	78.3	82.5	85.4	87.0	92.5
HALFCHEETAH-MEDIUM-REPLAY-	v2	36.6	36.6	45.5	44.2	45.9	43.8	47.8	57.0
HOPPER-MEDIUM-REPLAY-V2		18.1	82.7	95.0	94.7	92.1	99.1	101.3	102.7
WALKER2D-MEDIUM-REPLAY-V2		26.0	66.6	77.2	73.9	85.1	84.0	95.5	94.20
HALFCHEETAH-MEDIUM-EXPERT-	v2	55.2	86.8	91.6	86.7	95.9	86.7	96.8	90.32
HOPPER-MEDIUM-EXPERT-V2		52.5	107.6	105.4	91.5	108.6	99.6	111.1	111.9
walker2d-medium-expert-v2		107.5	108.1	108.8	109.6	112.7	109.0	110.1	111.2
AVERAGE		51.9	74.7	77.6	77.0	82.1	79.9	88.0	89.9
ANTMAZE TASKS	BC	C DT	CQL	IQL	MSG	IDQL-A	IQL+EDP	Diff-QL	OURS
ANTMAZE-UMAZE-V0	54.	6 59.2	74	87.5	97.8	94.0	87.5	93.4	100
ANTMAZE-UMAZE-DIVERSE-V0	45.	6 53.0	84.0	62.2	81.8	80.2	62.2	66.2	79.8
ANTMAZE-MEDIUM-PLAY-V0	0.0	0.0	61.2	71.2	89.6	84.5	71.2	76.6	91.4
ANTMAZE-MEDIUM-DIVERSE-V0	0.0	0.0	53.7	70.0	88.6	84.8	70.0	78.6	91.6
ANTMAZE-LARGE-PLAY-V0	0.0	0.0	15.8	39.6	72.6	63.5	39.6	46.4	81.2
ANTMAZE-LARGE-DIVERSE-V0	0.0	0.0	14.9	47.5	71.4	67.9	47.6	56.6	76.4
AVERAGE	16.	7 18.7	50.6	63.0	83.6	79.1	63.0	69.6	86.7

Gym Tasks		BC	DT	CQL	IQL	IDQL-A	IQL+EDP	Diff-QL	OURS
HALFCHEETAH-MEDIUM-V2		42.6	42.6	44.0	47.4	51.0	48.1	51.1	54.9
hopper-medium-v2		52.9	67.6	58.5	66.3	65.4	63.1	90.5	94.2
WALKER2D-MEDIUM-V2		75.3	74.0	72.5	78.3	82.5	85.4	87.0	92.5
HALFCHEETAH-MEDIUM-REPLAY-	v2	36.6	36.6	45.5	44.2	45.9	43.8	47.8	57.0
HOPPER-MEDIUM-REPLAY-V2		18.1	82.7	95.0	94.7	92.1	99.1	101.3	102.7
WALKER2D-MEDIUM-REPLAY-V2		26.0	66.6	77.2	73.9	85.1	84.0	95.5	94.20
HALFCHEETAH-MEDIUM-EXPERT-V2		55.2	86.8	91.6	86.7	95.9	86.7	96.8	90.32
HOPPER-MEDIUM-EXPERT-V2		52.5	107.6	105.4	91.5	108.6	99.6	111.1	111.9
walker2d-medium-expert-v2		107.5	108.1	108.8	109.6	112.7	109.0	110.1	111.2
AVERAGE		51.9	74.7	77.6	77.0	82.1	79.9	88.0	89.9
ANTMAZE TASKS	BC	C DT	CQL	IQL	MSG	IDQL-A	IQL+EDP	Diff-QL	OURS
ANTMAZE-UMAZE-V0	54.	6 59.2	74	87.5	97.8	94.0	87.5	93.4	100
ANTMAZE-UMAZE-DIVERSE-V0	45.	6 53.0	84.0	62.2	81.8	80.2	62.2	66.2	79.8
ANTMAZE-MEDIUM-PLAY-V0	0.0	0.0	61.2	71.2	89.6	84.5	71.2	76.6	91.4
ANTMAZE-MEDIUM-DIVERSE-V0	0.0	0.0	53.7	70.0	88.6	84.8	70.0	78.6	91.6
ANTMAZE-LARGE-PLAY-V0	0.0	0.0	15.8	39.6	72.6	63.5	39.6	46.4	81.2
ANTMAZE-LARGE-DIVERSE-V0	0.0	0.0	14.9	47.5	71.4	67.9	47.6	56.6	76.4
AVERAGE	16.	7 18.7	50.6	63.0	83.6	79.1	63.0	69.6	86.7

Gym Tasks		BC	DT	CQL	IQL	IDQL-A	IQL+EDP	Diff-QL	OURS
HALFCHEETAH-MEDIUM-V2		42.6	42.6	44.0	47.4	51.0	48.1	51.1	54.9
HOPPER-MEDIUM-V2		52.9	67.6	58.5	66.3	65.4	63.1	90.5	94.2
WALKER2D-MEDIUM-V2		75.3	74.0	72.5	78.3	82.5	85.4	87.0	92.5
HALFCHEETAH-MEDIUM-REPLAY-V	/2	36.6	36.6	45.5	44.2	45.9	43.8	47.8	57.0
HOPPER-MEDIUM-REPLAY-V2		18.1	82.7	95.0	94.7	92.1	99.1	101.3	102.7
walker2d-medium-replay-v2		26.0	66.6	77.2	73.9	85.1	84.0	95.5	94.20
HALFCHEETAH-MEDIUM-EXPERT-V	/2	55.2	86.8	91.6	86.7	95.9	86.7	96.8	90.32
HOPPER-MEDIUM-EXPERT-V2		52.5	107.6	105.4	91.5	108.6	99.6	111.1	111.9
walker2d-medium-expert-v2		107.5	108.1	108.8	109.6	112.7	109.0	110.1	111.2
AVERAGE		51.9	74.7	77.6	77.0	82.1	79.9	88.0	89.9
Suboptimal									
ANTMAZE TASKS Reward	BC	C DT	CQL	IQL	MSG	IDQL-A	IQL+EDP	Diff-QL	OURS
ANTMAZE-UMAZE-V0	54.	6 59.2	74	87.5	97.8	94.0	87.5	93.4	100
ANTMAZE-UMAZE-DIVERSE-V0	45.	6 53.0	84.0	62.2	81.8	80.2	62.2	66.2	79.8
ANTMAZE-MEDIUM-PLAY-V0	0.0	0.0	61.2	71.2	89.6	84.5	71.2	76.6	91.4
ANTMAZE-MEDIUM-DIVERSE-V0	0.0	0.0	53.7	70.0	88.6	84.8	70.0	78.6	91.6
ANTMAZE-LARGE-PLAY-V0	0.0	0.0	15.8	39.6	72.6	63.5	39.6	46.4	81.2
ANTMAZE-LARGE-DIVERSE-V0	0.0	0.0	14.9	47.5	71.4	67.9	47.6	56.6	76.4
AVERAGE	16.	7 18.7	50.6	63.0	83.6	79.1	63.0	69.6	86.7

GYM TASKS		BC	DT	CQL	IQL	IDQL-A	IQL+EDP	DIFF-QL	OURS
HALFCHEETAH-MEDIUM-V2		42.6	42.6	44.0	47.4	51.0	48.1	51.1	54.9
HOPPER-MEDIUM-V2		52.9	67.6	58.5	66.3	65.4	63.1	90.5	94.2
walker2d-medium-v2		75.3	74.0	72.5	78.3	82.5	85.4	87.0	92.5
HALFCHEETAH-MEDIUM-REPLAY-	v2	36.6	36.6	45.5	44.2	45.9	43.8	47.8	57.0
HOPPER-MEDIUM-REPLAY-V2		18.1	82.7	95.0	94.7	92.1	99.1	101.3	102.7
WALKER2D-MEDIUM-REPLAY-V2		26.0	66.6	77.2	73.9	85.1	84.0	95.5	94.20
HALFCHEETAH-MEDIUM-EXPERT-	v2	55.2	86.8	91.6	86.7	95.9	86.7	96.8	90.32
HOPPER-MEDIUM-EXPERT-V2		52.5	107.6	105.4	91.5	108.6	99.6	111.1	111.9
walker2d-medium-expert-v2		107.5	108.1	108.8	109.6	112.7	109.0	110.1	111.2
AVERAGE		51.9	74.7	77.6	77.0	82.1	79.9	88.0	89.9
Suboptimal									
ANTMAZE TASKS + Sparse Reward	BC	C DT	CQL	IQL	MSG	IDQL-A	IQL+EDP	Diff-QL	OURS
ANTMAZE-UMAZE-V0	54.	6 59.2	74	87.5	97.8	94.0	87.5	93.4	100
ANTMAZE-UMAZE-DIVERSE-V0	45.	6 53.0	84.0	62.2	81.8	80.2	62.2	66.2	79.8
ANTMAZE-MEDIUM-PLAY-V0	0.0	0.0	61.2	71.2	89.6	84.5	71.2	76.6	91.4
ANTMAZE-MEDIUM-DIVERSE-V0	0.0	0.0	53.7	70.0	88.6	84.8	70.0	78.6	91.6
ANTMAZE-LARGE-PLAY-V0	0.0	0.0	15.8	39.6	72.6	63.5	39.6	46.4	81.2
ANTMAZE-LARGE-DIVERSE-V0	0.0	0.0	14.9	47.5	71.4	67.9	47.6	56.6	76.4
AVERAGE	16.	7 18.7	50.6	63.0	83.6	79.1	63.0	69.6	86.7

