Embedding Trajectory for Out-of-Distribution Detection in Mathematical Reasoning

Yiming Wang^{\alpha}Pei Zhang^{\beta,\gamma}Baosong Yang^{\beta,\boxtimes}Derek F. Wong^{\gamma}Zhuosheng Zhang^{\alpha}Rui Wang^{\alpha,\boxtimes}

^{α}Shanghai Jiao Tong University ^{β}Tongyi Lab ^{γ}NLP²CT Lab, University of Macau

🖂 : Corresponding Author

 $^{\alpha}$ {yiming.wang, wangrui12}@sjtu.edu.cn Email:

^Byangbaosong.ybs@alibaba-inc.com

Abbreviations: In-Distribution -> ID; Out-of-Distribution -> OOD; Mahalanobis Distance -> MaDis

TV Score: Trajectory-based OOD Detection Method

• First, we fit all ID embeddings at each layer *l* to a Gaussian distribution

$$\boldsymbol{\mathcal{G}}_l = \mathcal{N}(\boldsymbol{\mu}_l, \boldsymbol{\Sigma}_l)$$

• Next, for a new sample with y_l be its embedding at layer l, we map it to its MaDis

$$f(\boldsymbol{y}_l) = (\boldsymbol{y}_l - \boldsymbol{\mu}_l)^{\mathsf{T}} (\boldsymbol{\Sigma}_l)^{-1} (\boldsymbol{y}_l - \boldsymbol{\mu}_l) \quad (1 \le l \le L)$$

• Finally, we average all adjacent-layer volatilities $|f(y_l) - f(y_{l-1})|$ as the final trajectory volatility score

$$S = \frac{1}{L} \cdot \sum_{l=1}^{L} |f(\mathbf{y}_l) - f(\mathbf{y}_{l-1})| \qquad (\text{TV Score})$$

• First, We define the *k*-order embedding and Gaussian distribution

$$\nabla^{k} \boldsymbol{y}_{l} = \sum_{i=0}^{k} (-1)^{k+i} C_{k}^{i} \boldsymbol{y}_{l+k}, \qquad \nabla^{k} \boldsymbol{G}_{l} = \mathcal{N} \left(\sum_{i=0}^{k} (-1)^{k+i} C_{k}^{i} \boldsymbol{\mu}_{l+k}, \sum_{i=0}^{k} (-1)^{k+i} C_{k}^{i} \boldsymbol{\mu}_{l+k} \right)$$

• Next, we map $\nabla^k y_l$ to its MaDis

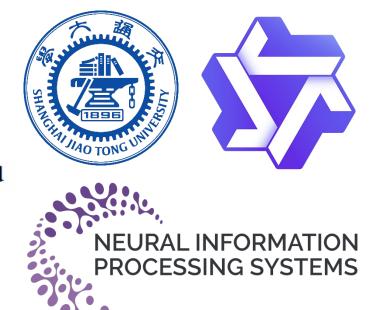
$$\nabla^k f(\boldsymbol{y}_l) = \left(\nabla^k \boldsymbol{y}_l - \sum_{i=0}^k (-1)^{k+i} C_k^i \boldsymbol{\mu}_{l+k}\right)^\top \left(\sum_{i=0}^k C_k^i \boldsymbol{\Sigma}_{l+k}\right)^{-1} \left(\nabla^k \boldsymbol{y}_l - \sum_{i=0}^k (-1)^{k+i} C_k^i \boldsymbol{\mu}_{l+k}\right)^\top \left(\sum_{i=0}^k C_k^i \boldsymbol{\Sigma}_{l+k}\right)^{-1} \left(\nabla^k \boldsymbol{y}_l - \sum_{i=0}^k (-1)^{k+i} C_k^i \boldsymbol{\mu}_{l+k}\right)^\top \left(\sum_{i=0}^k C_k^i \boldsymbol{\Sigma}_{l+k}\right)^{-1} \left(\nabla^k \boldsymbol{y}_l - \sum_{i=0}^k (-1)^{k+i} C_k^i \boldsymbol{\mu}_{l+k}\right)^\top \left(\sum_{i=0}^k C_k^i \boldsymbol{\Sigma}_{l+k}\right)^{-1} \left(\nabla^k \boldsymbol{y}_l - \sum_{i=0}^k (-1)^{k+i} C_k^i \boldsymbol{\mu}_{l+k}\right)^\top \left(\sum_{i=0}^k C_k^i \boldsymbol{\Sigma}_{l+k}\right)^{-1} \left(\nabla^k \boldsymbol{y}_l - \sum_{i=0}^k (-1)^{k+i} C_k^i \boldsymbol{\mu}_{l+k}\right)^\top \left(\sum_{i=0}^k C_k^i \boldsymbol{\Sigma}_{l+k}\right)^{-1} \left(\nabla^k \boldsymbol{y}_l - \sum_{i=0}^k (-1)^{k+i} C_k^i \boldsymbol{\mu}_{l+k}\right)^\top \left(\sum_{i=0}^k C_k^i \boldsymbol{\Sigma}_{l+k}\right)^{-1} \left(\nabla^k \boldsymbol{y}_l - \sum_{i=0}^k (-1)^{k+i} C_k^i \boldsymbol{\mu}_{l+k}\right)^\top \left(\sum_{i=0}^k C_k^i \boldsymbol{\Sigma}_{l+k}\right)^{-1} \left(\nabla^k \boldsymbol{y}_l - \sum_{i=0}^k C_k^i \boldsymbol{\Sigma}_{l+k}\right)^{-1} \left(\nabla^k \boldsymbol{y}$$

• Finally, we define the trajectory volatility score after *differential smoothing*

$$S = \frac{1}{L} \cdot \sum_{l=1}^{L} \left| \nabla^{k} f(\boldsymbol{y}_{l}) - \nabla^{k} f(\boldsymbol{y}_{l-1}) \right| \qquad (\text{TV Score w}/\text{ DiSn})$$

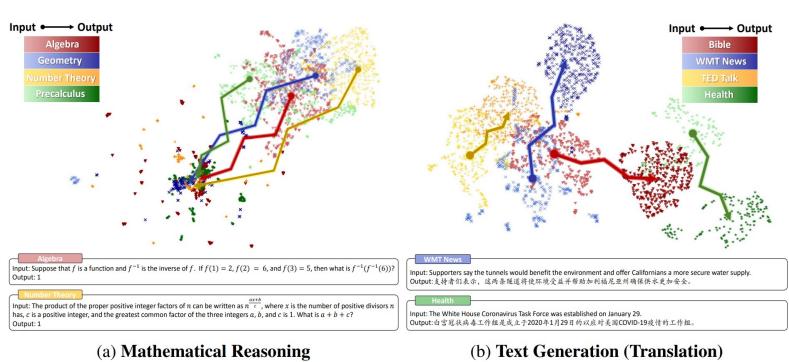
Experiments

Model		Llama2-7B [50]				GPT2-XL [5]				Far-shift OOD Setting			Near-shift OOD Setting		
Metric Method	Far-shift OOD		Near-shift OOD		Far-shift OOD		Near-shift OOD			Accuracy	Robustness		Accuracy	Robustness	
	AUROC ↑	FPR95↓	AUROC ↑	FPR95 \downarrow	AUROC ↑	FPR95↓	AUROC ↑	FPR95↓	Dataset			Dataset			
Max Softmax Prob. [12]	78.66±1.38	81.44±3.56	60.14±1.54	88.91±2.41	70.54±1.42	78.29±2.02	67.12±1.20	76.27 ± 2.66		I-Emb. / O-Emb. / TV (ours)			I-Emb. / O-Emb. / TV (ours)		
Monte-Carlo Dropout [8]	68.63±2.21	87.04±4.88	52.33±2.21	91.92±1.89	66.18±1.87	84.69±1.65	63.54±1.72	78.08 ± 2.50	Algebra	76.43 / 45.42 / 93.88	5.27 / 6.94 / 0.97	GSM8K	81.49 / 75.32 / 93.39	10.08 / 3.36 / 2.05	
Perplexity [3]	85.64 ± 1.46	53.06±4.36	59.35±1.89	$86.09{\scriptstyle\pm1.89}$	80.82 ± 1.04	$64.53{\scriptstyle\pm2.10}$	73.74 ± 1.12	72.39 ± 1.27	Geometry	74.32 / 54.79 / 94.47	2.44 / 2.43 / 1.65	SVAMP	68.66 / 63.33 / 94.88	5.26/3.54/2.13	
Input Embedding [43]	75.89±1.03	67.87±3.69	60.33±1.37	84.65 ± 2.53	$\underline{86.26{\scriptstyle\pm0.84}}$	$\underline{49.33{\scriptstyle\pm2.10}}$	83.22 ± 0.88	52.90±3.16	Cnt.&Prob	50.31 / 27.55 / 93.74	9.99 / 2.34 / 2.36	AddSub	79.16 / 78.09 / 74.11	3.21 / 6.98 / 2.77	
Output Embedding [43]	74.86±1.39	75.21±2.16	44.50 ± 1.06	86.46±1.59	77.95 ± 1.16	65.64±3.42	79.28 ± 1.24	64.70±2.72	Num.Theory	85.80 / 54.38 / 92.08	3.31 / 11.45 / 2.34	SingleEq	59.83 / 72.56 / 93.15	11.57 / 3.14 / 3.17	
TV Score (Ours) w/ DiSmo (Ours)	98.76 ±0.11 93.25±0.76	5.21 ±0.98 41.82±4.69	92.64 ±0.39 56.99±1.41	28.39 ± 1.38 88.01 ± 1.71	93.47±0.08 96.54±0.11	24.10±0.95 9.89±0.61	94.86±0.23 94.19±0.25	13.82±0.36 13.66±0.69	Precalculus	80.33 / 88.50 / 99.28	6.13 / 1.38 / 0.67	SingleOp	69.38 / 62.20 / 95.75	4.00 / 2.37 / 2.45	
Δ (bold - <u>underline</u>)	+13.12	-47.85	+32.31	-56.26	+10.28	-39.44	+11.64	-39.24	Average	73.44 / 54.13 / 94.69	5.43 / 4.91 / 1.60	Average	71.70 / 70.30 / 90.26	6.82 / 3.88 / 2.51	



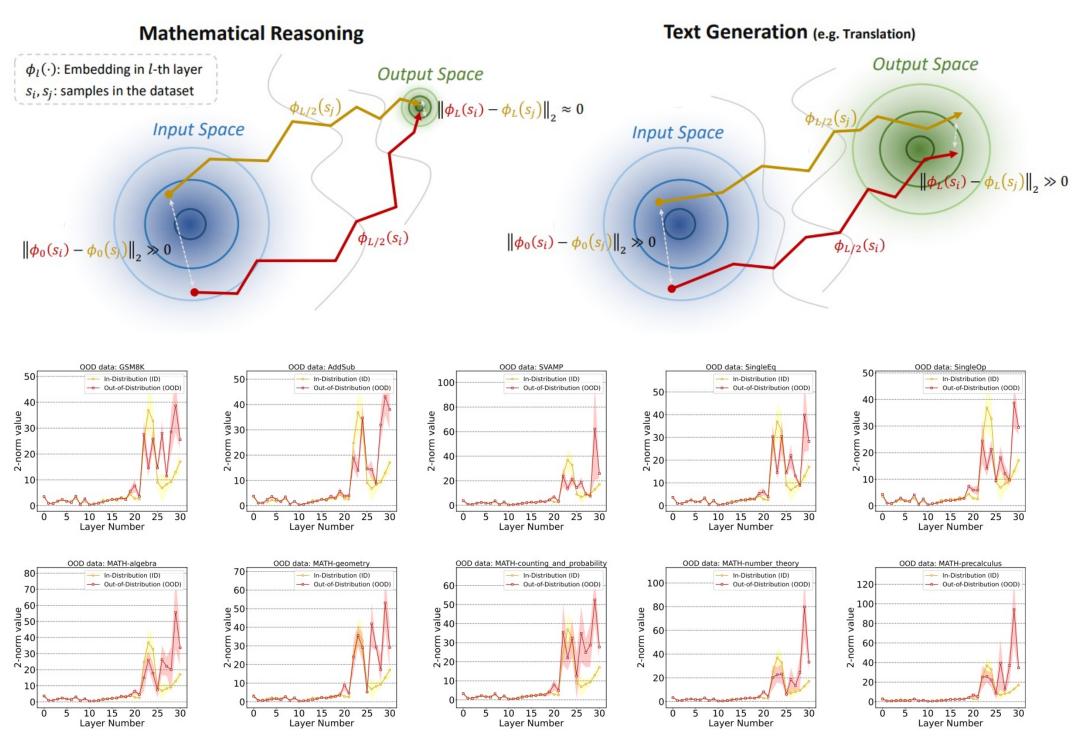
Static Embedding Method (Traditional):

MaDis between the *new sample embedding* and *ID embedding* distribution in static input or output space.

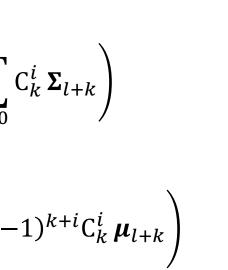


Why Dynamic <u>Embedding Trajectory</u> Applicable?

 \succ What is the Embedding Trajectory? y_l is the sentence embedding at layer l, the embedding trajectory is formed as a progressive chain of these embeddings: $y_0 \rightarrow y_1 \rightarrow \cdots \rightarrow y_l \rightarrow \cdots \rightarrow y_l$



Change curves of embedding differences between neighboring hidden layers under ID and OOD data (Llama-2-7B)



mo)

Inapplicability of <u>Static Embedding</u> Method in Mathematical Reasoning

Why Static Embedding Method Inapplicable:

- *Input space* exhibits vague clustering features across domains.
- **Output space** of mathematical reasoning exhibits high-density characteristics with significant overlap between different domains -> "<u>Pattern Collapse</u>"
 - Expression-level: Output is symbolic/scalar (1,2,x,y...) -> compress the search space.
 - **Token-level:** Sequence tokenization used in GLMs allows for substantial token sharing among mathematically distinct expressions

(2822 -> ['2', '8', '2', '2'], 8122/8 -> ['8', '1', '2', '2', '/', '8'], ...)

- *"pattern collapse"* causes the convergence of the trajectory endpoints of different samples -> leading to significant trajectory differences across samples.
- For ID data, GLMs largely complete reasoning in the mid-to-late stages (-> "*Early Stablization*"), and simple adjustments are enough after that.
- For OOD data, GLMs can **still not** complete accurate reasoning at a later stage, can only randomly switch to a specific output pattern.

Paper

