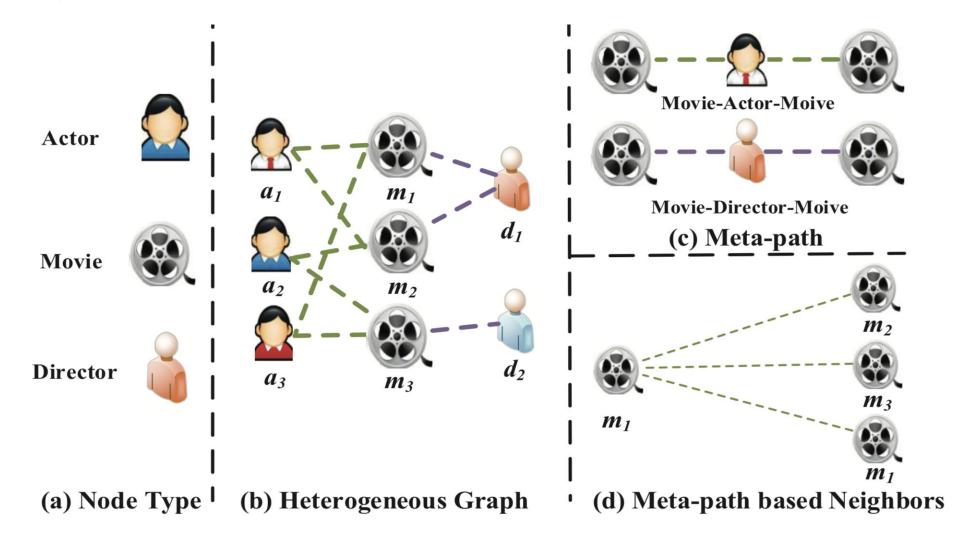


Long-range Meta-path Search on Large-scale Heterogeneous Graphs

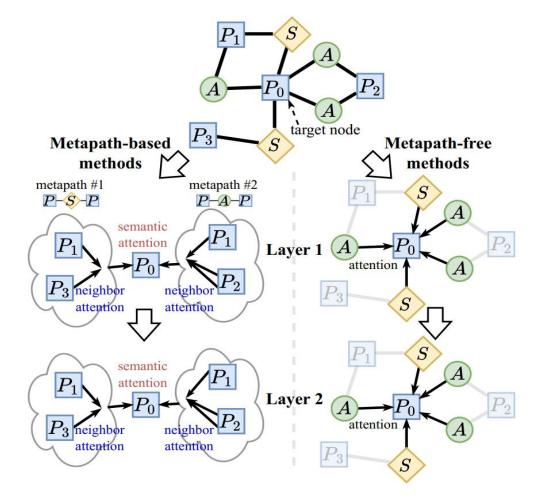
Chao Li, Zijie Guo, Qiuting He, Kun He*

Hopcroft Center on Computing Science, School of Computer Science and Technology, Huazhong University of Science and Technology, China (*Corresponding author)

Heterogeneous Graph and Meta-path



Classification of Heterogeneous Graph Neural Networks



- Metapath-based methods: First capture structural information from the same semantic relationships, then fuse different semantic vectors to generate the final output.
- Metapath-free methods: Capture structural and semantic information simultaneously.

> Motivation

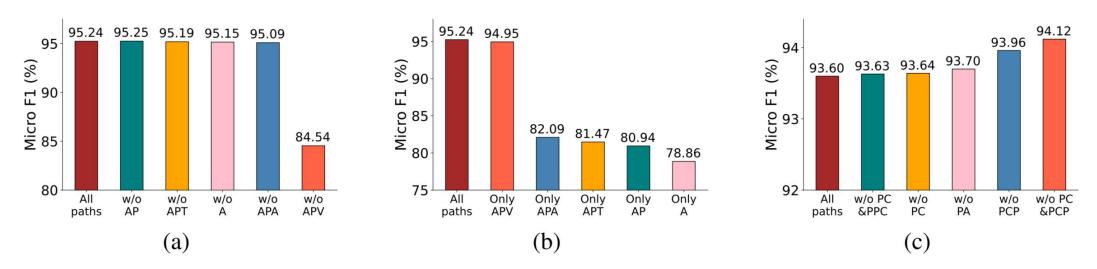


Figure 1: Analysis of the importance of different meta-paths. (a) illustrates the results after removing a single meta-path on DBLP; (b) shows the performance of utilizing a single meta-path on DBLP; (c) illustrates the performance after removing a part of meta-paths on ACM.

Two conclusions:

- A small number of meta-paths provide major contributions.
- Certain meta-paths can have a negative impact for heterogeneous graphs.

> LMSPS

• Key idea:

Focusing on Long-range Dependency Issues in Large-scale Heterogeneous Graphs

Main Challenges:

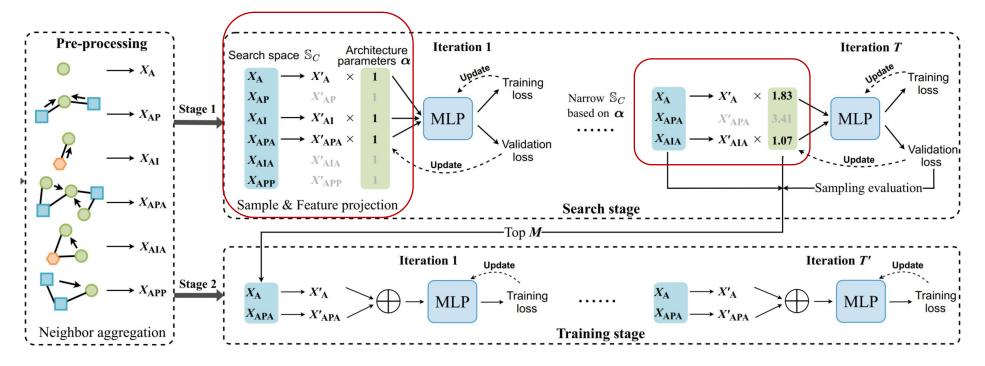
- **Balancing Efficiency and Effectiveness:** How to retain as much heterogeneous information as possible while reducing computational costs under the presence of heterogeneity.
- Overcoming Over-smoothing Problem: Over-smoothing is a classic issue when graph neural networks utilize long-range dependencies. It is also necessary to consider how to overcome the over-smoothing problem in heterogeneous graphs.
- Enhancing Generalization: How to make the discovered meta-paths effective on other HGNNs.

Core Idea of LMSPS:

• The proposed method falls into the category of meta-path-based approaches. It leverages meta-path search to identify effective meta-paths and eliminate ineffective or redundant ones.

>LMSPS

Balancing Efficiency and Effectiveness

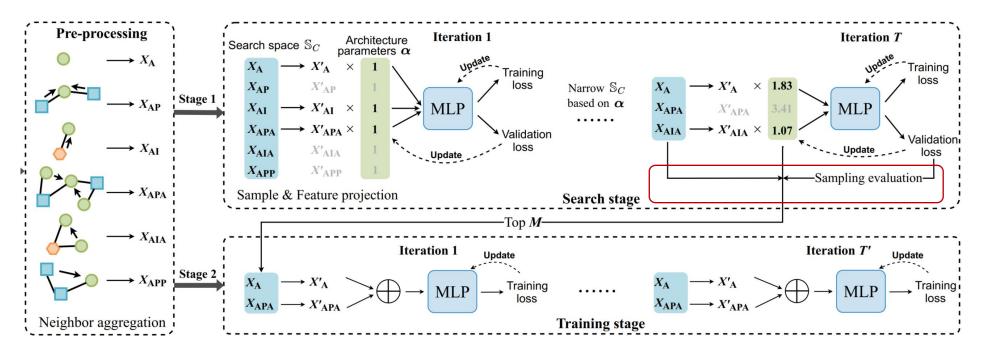


Strategies for Enhancing Efficiency:

• **Progressive Sampling Search:** To overcome efficiency challenges, only a portion of the metapaths participate in updates during each iteration. Meanwhile, the search space gradually decreases throughout the search process.

>LMSPS

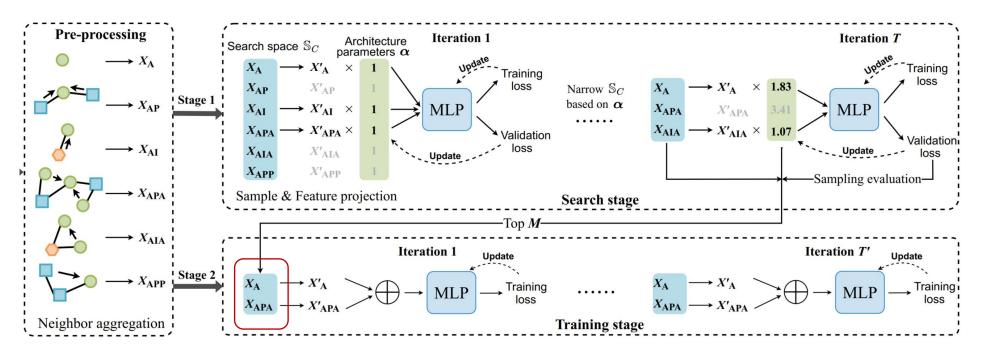
Balancing Efficiency and Effectiveness



Strategies for Improving Effectiveness:

• Sampling Evaluation: Within the compressed search space, a subset of meta-paths is sampled at each evaluation to assess performance. The subset of meta-paths with the minimum validation loss is selected as the final outcome.

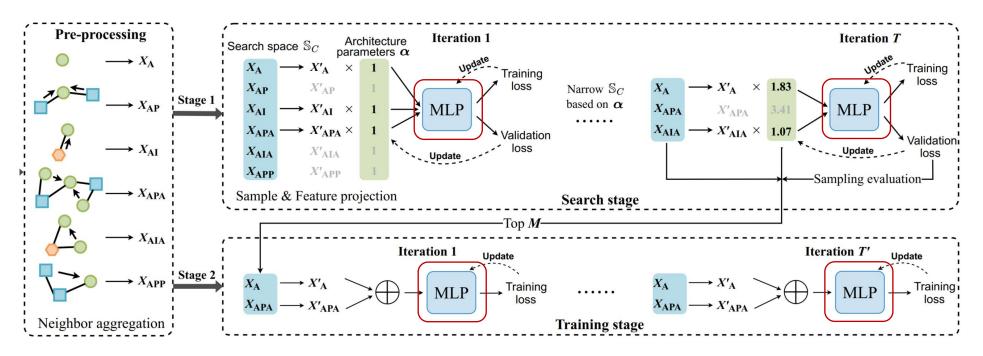
Overcoming the Over-smoothing Problem



Over-smoothing Issue: As depth increases, node embeddings tend to become similar

• Solution Approach: Each target node aggregates different neighboring nodes under the constraint of effective meta-path instances.

Enhancing Generalization



Scheme for Enhancing Generalization: Utilizing Pure MLP Architecture

• Compared to Transformers, MLPs involve less inductive bias, meaning there is less human intervention. This allows the search results to be unaffected by specific modules.

• Performance comparison

Table 1: Performance on small and large datasets. Best is in bold, and the runner-up is underlined.

Method	DBLP		IMDB		ACM		Freebase		OGBN-MAG*
Method	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Test Acc.
MLP 19		-	-	-	-	, i e	-	.=	26.92 ± 0.26
GraphSAGE [14]	-	-	-	-	-	-	-	-	46.78 ± 0.67
RGCN 41	91.52 ± 0.50	92.07 ± 0.50	58.85 ± 0.26	62.05 ± 0.15	91.55 ± 0.74	91.41 ± 0.75	46.78 ± 0.77	58.33 ± 1.57	47.37 ± 0.48
HAN 48	91.67 ± 0.49	92.05 ± 0.62	57.74 ± 0.96	64.63 ± 0.58	90.89 ± 0.43	90.79 ± 0.43	21.31 ± 1.68	54.77 ± 1.40	OOM
GTN 56	93.52 ± 0.55	93.97 ± 0.54	60.47 ± 0.98	65.14 ± 0.45	91.31 ± 0.70	91.20 ± 0.71	OOM	OOM	OOM
RSHN 63	93.34 ± 0.58	93.81 ± 0.55	59.85 ± 3.21	64.22 ± 1.03	90.50 ± 1.51	90.32 ± 1.54	OOM	OOM	OOM
HetGNN 57	91.76 ± 0.43	92.33 ± 0.41	48.25 ± 0.67	51.16 ± 0.65	85.91 ± 0.25	86.05 ± 0.25	OOM	OOM	OOM
MAGNN 11	93.28 ± 0.51	93.76 ± 0.45	56.49 ± 3.20	64.67 ± 1.67	90.88 ± 0.64	90.77 ± 0.65	OOM	OOM	OOM
HetSANN 18	78.55 ± 2.42	80.56 ± 1.50	49.47 ± 1.21	57.68 ± 0.44	90.02 ± 0.35	89.91 ± 0.37	OOM	OOM	OOM
GCN 26	90.84 ± 0.32	91.47 ± 0.34	57.88 ± 1.18	64.82 ± 0.64	92.17 ± 0.24	92.12 ± 0.23	27.84 ± 3.13	60.23 ± 0.92	OOM
GAT 46	93.83 ± 0.27	93.39 ± 0.30	58.94 ± 1.35	64.86 ± 0.43	92.26 ± 0.94	92.19 ± 0.93	40.74 ± 2.58	65.26 ± 0.80	OOM
Simple-HGN 34	94.01 ± 0.24	94.46 ± 0.22	63.53 ± 1.36	67.36 ± 0.57	93.42 ± 0.44	93.35 ± 0.45	47.72 ± 1.48	66.29 ± 0.45	OOM
HGT 21	93.01 ± 0.23	93.49 ± 0.25	63.00 ± 1.19	67.20 ± 0.57	91.12 ± 0.76	91.00 ± 0.76	29.28 ± 2.52	60.51 ± 1.16	46.78 ± 0.42
GraphMSE 31	94.08 ± 0.14	94.44 ± 0.13	57.60 ± 2.13	62.37 ± 1.03	92.58 ± 0.50	92.54 ± 0.14	OOM	OOM	OOM
DiffMG 8	94.01 ± 0.37	94.20 ± 0.36	58.09 ± 1.35	59.75 ± 1.23	88.16 ± 2.83	88.07 ± 3.04	OOM	OOM	OOM
Random	93.57 ± 0.64	93.84 ± 0.53	52.13 ± 0.74	53.83 ± 0.66	90.91 ± 1.02	90.82 ± 0.93	21.22 ± 2.58	37.54 ± 2.66	35.14 ± 3.78
NARS 55	94.18 ± 0.47	94.61 ± 0.42	63.51 ± 0.68	66.18 ± 0.70	93.36 ± 0.32	93.31 ± 0.33	49.98 ± 1.77	63.26 ± 1.26	50.66 ± 0.22
space4HGNN 59	94.24 ± 0.42	94.63 ± 0.40	61.57 ± 1.19	63.96 ± 0.43	92.50 ± 0.14	92.38 ± 0.10	41.37 ± 4.49	65.66 ± 4.94	OOM
PMMM 27	94.82 ± 0.26	95.14 ± 0.22	65.81 ± 0.29	67.58 ± 0.22	93.78 ± 0.25	93.71 ± 0.17	OOM	OOM	OOM
HINormer 36	94.57 ± 0.23	94.94 ± 0.21	64.65 ± 0.53	67.83 ± 0.34	93.91 ± 0.42	93.83 ± 0.45	52.18 ± 0.39	64.92 ± 0.43	OOM
SeHGNN 52	94.86 ± 0.14	95.24 ± 0.13	66.63 ± 0.34	68.21 ± 0.32	93.95 ± 0.48	93.87 ± 0.50	$\overline{50.71\pm0.44}$	63.41 ± 0.47	51.45 ± 0.29
SlotGAT 62	94.95 ± 0.20	95.31 ± 0.19	$\overline{64.05\pm0.60}$	68.64 ± 0.33	93.99 ± 0.23	94.06 ± 0.22	49.68 ± 1.97	$\textbf{66.83} \pm \textbf{0.30}$	OOM
LMSPS (ours)	$\textbf{95.35} \pm \textbf{0.22}$	$\overline{\textbf{95.66}\pm\textbf{0.20}}$	$\textbf{66.99} \pm \textbf{0.32}$	$\overline{\textbf{68.70} \pm \textbf{0.26}}$	$\overline{\textbf{94.73}\pm\textbf{0.41}}$	$\textbf{94.69} \pm \textbf{0.36}$	$\textbf{53.26} \pm \textbf{0.47}$	$\underline{66.09 \pm 0.51}$	$\textbf{54.83} \pm \textbf{0.20}$

* OGBN-MAG is a large dataset with nodes' numbers 10 to 175 times that of the other four datasets.

Memory cost and training time comparison

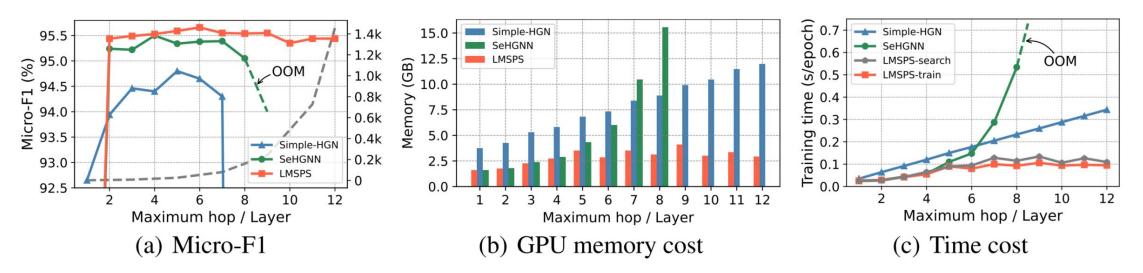


Figure 3: Illustration of (a) performance, (b) memory cost, (c) average training time of Simple-HGN, SeHGNN, and LMSPS relative to the maximum hop or layer on DBLP. The *gray dotted line* in (a) indicates the number of target-node-related meta-paths under different maximum hops, which is exponential.

> Experiments

Study of maximum hop and search algorithm

of meta-paths under different maximum hops.

Table 2: Experiments on OGBN-MAG to analyze Table 3: Experiments to explore the effectiveness the performance of SeHGNN and LMSPS under of our search algorithm. In our LMSPS, the metadifferent maximum hops. #MP is the number paths are replaced by those discovered by other methods.

Max hop	#MP	SeHGNN		LMSPS		Method	DBLP	IMDB	ACM	Freebase	
	#1111	Time	Test accuracy	Time	Test accuracy		HAN	95.44 ± 0.14	65.95 ± 0.31	90.66 ± 0.30	-
1	4	4.35	47.18 ± 0.28	3.98	46.88 ± 0.10		GTN	95.33 ± 0.05	65.99 ± 0.16	90.66 ± 0.30	-
2	10	6.44	51.79 ± 0.24	5.63	51.91 ± 0.13		DARTS	95.35 ± 0.17	66.23 ± 0.14	93.45 ± 0.13	63.25 ± 0.42
3	23	11.28	52.44 ± 0.16	10.02	52.72 ± 0.24		SPOS	95.41 ± 0.43	67.10 ± 0.29	93.64 ± 0.37	64.02 ± 0.62
4	50	OOM	OOM	14.34	53.43 ± 0.18		DiffMG	95.45 ± 0.49	66.98 ± 0.37	93.61 ± 0.45	64.56 ± 0.78
5	107	OOM	OOM	14.77	53.90 ± 0.19		PMMM	95.48 ± 0.27	67.49 ± 0.24	93.74 ± 0.22	64.83 ± 0.46
6	226	OOM	OOM	14.71	$\textbf{54.83} \pm \textbf{0.20}$		LMSPS	$\textbf{95.66} \pm \textbf{0.20}$	$\textbf{68.70} \pm \textbf{0.26}$	$\textbf{94.69} \pm \textbf{0.36}$	$\textbf{66.09} \pm \textbf{0.51}$

> Experiments

Generalization and ablation study

Table 4: Experiments on the generalization of the searched meta paths. * means using the meta-paths searched in LMSPS.

Method	DBLP	IMDB	ACM	Freebase
HAN	92.05 ± 0.62	64.63 ± 0.58	90.79 ± 0.43	54.77 ± 1.40
HAN*	93.54 ± 0.15	65.89 ± 0.52	92.28 ± 0.47	57.13 ± 0.72
SeHGNN	95.24 ± 0.13	68.21 ± 0.32	93.87 ± 0.50	63.41 ± 0.47
SeHGNN*	95.57 ± 0.23	68.59 ± 0.24	94.46 ± 0.18	65.37 ± 0.42

Table 5: Results of LMSPS and SeHGNN on the sparse large-scale heterogeneous graphs. ↑ means the improvements in test accuracy.

Dataset	SeHGNN	LMSPS	\uparrow
OGBN-MAG-5	36.04 ± 0.64	40.82 ± 0.42	4.78
OGBN-MAG-10	38.27 ± 0.19	42.30 ± 0.23	4.03
OGBN-MAG-20	39.18 ± 0.09	42.65 ± 0.17	3.47
OGBN-MAG-50	39.50 ± 0.13	42.82 ± 0.16	3.32

Table 6: Experiments on small and large datasets to analyze the effects of different blocks in LMSPS. *PS* means progressive sampling strategy, and *SE* means sampling evaluation strategy. † means employing all meta-paths and replacing the concatenation operation with the transformer module.

Method -	DBLP		IMDB		ACM		Freebase		OGBN-MAG
	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Macro-F1	Micro-F1	Test Acc.
LMSPS w/o PS	94.71 ± 0.23	95.00 ± 0.19	64.85 ± 0.46	66.52 ± 0.37	93.19 ± 0.34	93.14 ± 0.41	48.89 ± 0.47	61.61 ± 0.51	47.66 ± 0.45
LMSPS w/o SE	95.15 ± 0.28	95.48 ± 0.24	65.46 ± 0.48	67.13 ± 0.47	94.20 ± 0.35	94.15 ± 0.31	52.08 ± 0.33	64.84 ± 0.38	52.94 ± 0.34
LMSPS [†]	95.06 ± 0.24	95.38 ± 0.21	66.85 ± 0.37	68.58 ± 0.34	94.60 ± 0.42	94.57 ± 0.39	OOM	OOM	OOM
LMSPS	$\textbf{95.35} \pm \textbf{0.22}$	$\textbf{95.66} \pm \textbf{0.20}$	$\textbf{66.99} \pm \textbf{0.32}$	$\textbf{68.70} \pm \textbf{0.26}$	$\textbf{94.73} \pm \textbf{0.41}$	$\textbf{94.69} \pm \textbf{0.36}$	$\textbf{53.26} \pm \textbf{0.47}$	$\textbf{66.09} \pm \textbf{0.51}$	$\textbf{54.83} \pm \textbf{0.20}$

- We propose a novel meta-path search framework termed LMSPS, which to our knowledge is the first HGNNs to utilize long-range dependency in large-scale heterogeneous graphs.
- To search for effective meta-paths efficiently, we introduce a novel progressive sampling algorithmto reduce the search space dynamically and a sampling evaluation strategy for meta-path selection.
- Moreover, the searched meta-paths of LMSPS can be generalized to other HGNNs to boost their performance.
- We find that: 1) A minority of meta-paths provide the main contributions; 2) Certain metapaths have negative impacts on heterogeneous graphs. These findings offer certain guidance on how to utilize meta-paths in heterogeneous graphs.

Thanks for your attention!