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Background

• Reinforcement Learning (RL) continuously optimizes a policy to maximize the
expected cumulative reward:
– Interact with the environment

– Learn from trial and error

– Demonstrate significant potential and progress across various industries

2Sutton, Richard S. "Reinforcement learning: An introduction." A Bradford Book (2018).
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Background

• The trial-and-error learning process

– may be unrealistic in safety-critical areas like autonomous driving
– One solution is to train the policy in a surrogate source domain and deploy it in the 

downstream target domain, but it fails due to the domain gap

3
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Background

• Domain transfer methods aim to close the domain gap for policy 
transfer without sacrificing significant performance:
– Domain randomization trains a generalizable                                                  

policy across a series of randomized domains
• require manually setting the randomized

physics parameter distribution
• trade optimality for robustness

– Domain adaptation refines the trained policy                                                   
through limited interactions in the target domain

• still need online interactions with the target domain
• entail prohibitive costs and safety risks

– A more reasonable method is needed
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Sadeghi, Fereshteh, and Sergey Levine. "CAD2RL: Real Single-Image Flight Without a Single Real Image." Robotics: Science and Systems XIII (2017).
Eysenbach, Benjamin, et al. "Off-dynamics reinforcement learning: Training for transfer with domain classifiers." International Conference on Learning Representations.
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Background

• Offline domain calibration:
– Utilize offline data from the target domain to 

calibrate the physics parameters of the source 
domain to align with the target domain

• No manual setup required

• No online interactions needed
– Previous methods use evolution algorithms (EA) or RL to

calibrate the parameters distribution 𝑞! 𝜉 = 𝒩(𝜇, Σ)

• 𝜇, Σ are both 𝑁-dimensional vectors

• Work well when 𝑁 is small, but work poorly when 𝑁 is large due to low sample
efficiency

– Single-agent methods struggle to correctly evaluate the utility of all parameters 
simultaneously

5Tsai, Ya-Yen, et al. “DROID: Minimizing the reality gap using single-shot human demonstration.” IEEE Robotics and Automation Letters 6.2 (2021): 3168-3175.
Gur, Izzeddin, Ofir Nachum, and Aleksandra Faust. ”Targeted environment design from offline data." Deep RL Workshop NeurIPS 2021.
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Motivation

• The action space of single-agent method is 𝐴 &.

• The action space for each individual agent of multi-agent method
is 𝐴 .
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Motivation

• When the dimension of physics parameters 𝑁 is large, different physics 
parameters contribute to different aspects of the calibration process. 
– Formulate the problem into Multi-Agent System (MAS), where each agent

calibrates a group of domain parameters with similar effects on the dynamics
may be a wise choice

– All the agents coordinate to reduce the domain gap, becoming a cooperative 
Multi-Agent Reinforcement Learning (MARL) problem

7Albrecht, Stefano V., Filippos Christianos, and Lukas Schäfer. Multi-agent reinforcement learning: Foundations and modern approaches. MIT Press, 2024.
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Motivation

• We conduct an experiment to investigate
the correlation between the critic value
and the absolute calibration error:

– A good critic should output a high value
when the parameter‘s absolute calibration 
error is low, and vice versa

– In the figure, the single-agent (SA) method 
with a shared critic fails to achieve this, while
the multi-agent (MA) method succeeds

• Therefore, our method formulates domain calibration as a cooperative multi-
agent reinforcement learning (MARL) problem, improving fidelity and efficiency, 
even with a handful of offline data. 
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Framework
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Experiment
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Conclusion

• We formulate offline domain calibration as a cooperative MARL problem to 
improve efficiency and fidelity

• Future work
– Apply to high-dimensional vision tasks and real-world tasks
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Thanks！
Q&A
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