Similarity-Navigated Conformal Prediction for Graph Neural Networks

Jianqing Song, Jianguo Huang, Wenyu Jiang, Baoming Zhang, Shuangjie Li, Chongjun Wang

Introduction

Conformal Prediction (CP) methods provide a theoretical guarantee for node classification tasks, ensuring that the conformal prediction set contains the ground-truth label with a desired probability (e.g., 95%).

We summarize our contributions as follows:

- Empirically explain that nodes with the same label play a critical role.
- Propose a novel algorithm, namely SNAPS.
- Theoretically show the marginal coverage properties and the validity.
- Extensive experimental results demonstrate the effectiveness.

Preliminary

Theorem 1 (Vovk et al., 2005) Let calibration data and a test instance, i.e., $\{(\bm{x}_i, y_i)\}_{i=1}^n \cup$ $\{(x_{n+1}, y_{n+1})\}$ be exchangeable. For any non-conformity score function $s : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ and any significance level $\alpha \in (0,1)$, define the $1 - \alpha$ quantile of scores as $\hat{q} :=$
Quantile $\left(\frac{[(1-\alpha)(n+1)]}{n}; \{s(x$ \hat{q} . We have

$$
1-\alpha\leq \mathbb{P}[y_{n+1}\in \mathcal{C}_{\alpha}(\boldsymbol{x}_{n+1})]<1-\alpha+\frac{1}{n+1}.
$$

Adaptive Prediction Sets. (Romano et al., 2020) Given a data pair (x, y) and a predicted probability estimator $\pi(x)_y$ for (x, y) , where $\pi(x)_y$ is the predicted probability for class y, the non-conformity scores can be computed by:

$$
s(\boldsymbol{x},y) = \sum_{i=1}^{|\mathcal{Y}|} \pi(\boldsymbol{x})_i \mathbb{I}[\pi(\boldsymbol{x})_i > \pi(\boldsymbol{x})_y] + \xi \cdot \pi(\boldsymbol{x})_y,
$$

structed as $\bar{\mathcal{C}}(\bm{x}) = \{y | s(\bm{x}, y) \leq \hat{q}\}.$

where $\xi \in [0,1]$ is a uniformly distributed random variable. Then, the prediction set is con-

Motivation

Empirically show that nodes with the same label as the ego node may play a critical role in the non-conformity scores of the ego node. Specifically, using the scores of nodes with the same label to correct the scores of the ego node could reduce the average size of prediction sets.

Framework

$$
= \frac{\boldsymbol{x}_i^\top \boldsymbol{x}_j}{\|\boldsymbol{x}_i\|_2 \cdot \|\boldsymbol{x}_j\|_2}
$$

and
$$
\mathbf{D}_s(i,i) = \sum_j \mathbf{A}_s(i,j)
$$

Feature similarity graph construction

- $Sim(i, j) =$
- $\mathbf{A}_s(i,j) = \text{Sim}(i,j)$

Similarity-Navigated Adaptive Prediction Sets (SNAPS)

$$
\hat{s}(\boldsymbol{x}_i,y) = (1-\lambda-\mu)s(\boldsymbol{x}_i,y) + \frac{\lambda}{\boldsymbol{D}_s(i,i)}\sum_{j=1}^M \boldsymbol{A}_s(i,j)s(\boldsymbol{x}_j,y) + \frac{\mu}{|\mathcal{N}_i|}\sum_{v_j \in \mathcal{N}_i} s(\boldsymbol{x}_j,y)
$$

Table 1: Results of Coverage, Size and SH on different datasets. For SNAPS we use the APS score as the basic score. We report the average calculated from 10 GCN runs with each run of 100 conformal

Experiments (1)

splits at a significance level $\alpha = 0.05$. Bold numbers indicate optimal performance.

Experiments (2)

Experiments (3)

Table 4: Results on Imagenet. The median-of-means is reported over 10 different trials. Bold numbers indicate optimal performance.

Conclusion

- Propose a general algorithm, namely SNAPS.
- Present theoretical analyses to certify the effectiveness of this method.
- Extensive experiments demonstrate the effectiveness of SNAPS.
- Extend SNAPS to image classification.

Limitations

- Many classification tasks require inductive learning.
- Graph construction based on feature similarity is both computationally inefficient and lacking accuracy.
- Many heterophilous networks are prevalent in practice.

NeurIPS 2024 Similarity-Navigated Conformal Prediction for Graph Neural Networks 11

Thank you!