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Introduction

• Time series forecasting is crucial across domains, but Transformer's effectiveness remains debated.

• While recent works question the effectiveness of Transformers, with simpler linear models often outperforming 
them, we argue that the core issue may lie in self-attention.

• The success of linear models suggests we need to rethink which components are truly necessary.

• Key question: Are self-attentions truly effective for time series forecasting?
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Motivation of Self-Attention Removal

• Conducted experiments with three PatchTST variations (overlapping, non-overlapping, w/o self-attention).

• Weight patterns in final linear layer reveal clearer temporal capture without self-attention.

• Performance analysis suggests self-attention might be unnecessary for time series forecasting.
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(a) Original PatchTST (b) PatchTST w/ non-overlapping (c) PatchTST w/o self-attn

Effect of self-attention in PatchTST

on forecasting performance



Rethinking Transformer Design

• Given the challenges associated with self-attention in time series forecasting, we propose a fundamental 
rethinking of the Transformer architecture:

• Traditional Transformers rely heavily on self-attention mechanisms, potentially leading to temporal information loss.

• Linear models remove all transformer-based components but may struggle with complex temporal dependencies.

• Our approach removes self-attention layers while preserving the advantages of cross-attention.
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(a) Transformer (b) Encoder (c) Linear model (d) Ours



Proposed Methodology

• We introduce a Cross-Attention-only Time Series transformer (CATS), that rethinks the traditional Transformer 
framework by eliminating self-attention and leveraging cross-attention mechanisms instead.
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Proposed Methodology

(A) Cross-Attention via Future as Query

• Novel query conceptualization

• Future horizons as learnable parameters

• Direct temporal pattern capture without information loss

• Time and memory complexity reduced to O(LT/P²) from O(L²)
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Proposed Methodology

(B) Parameter Sharing across Horizons

• Comprehensive sharing across all network layers

• Embedding Layer, Attention blocks, Projection Layer

• Cross-dimension parameter sharing

• Significant reduction in model parameters while maintaining 
performance
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Proposed Methodology

(C) Query-Adaptive Masking

• Novel selective masking technique

• Prevention of overfitting to keys/values

• Enhanced focus on horizon-specific patterns through probabilistic 
masking

4



Experimental Results

• Performance Comparison
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Multivariate Long-term Time Series Forecasting Results

Short-term Time Series Forecasting Results



Experimental Results

• Efficiency Analysis
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Model Scalability with Input Length

Superior Efficiency with Longer Sequences



Conclusion

• We introduce CATS, a novel architecture that simplifies the Transformer by eliminating all self-attentions
and focusing on cross-attention potential.

• We propose three specialized techniques tailored for cross-attention-only transformer: (i) cross-attention 
via future as query, (ii) parameter sharing across horizons, and (iii) query-adaptive masking.

• Our model achieves state-of-the-art performance with significantly fewer parameters, providing new 
insights into designing efficient architectures for time series forecasting.

• For more results and source code, please visit:
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