

Are Self-Attentions Effective for Time Series Forecasting?

Dongbin Kim (<u>dongbin413@snu.ac.kr</u>) NeurIPS 2024.

Dongbin Kim, Jinseong Park, Jaewook Lee*, Hoki Kim*.

Are Self-Attentions Effective for Time Series Forecasting?. NeurIPS 2024

https://github.com/dongbeank/CATS

- Time series forecasting is crucial across domains, but **Transformer's effectiveness remains debated.**
- While recent works question the effectiveness of Transformers, with simpler linear models often outperforming them, we argue that **the core issue may lie in self-attention**.
- The success of linear models suggests we need to rethink which components are truly necessary.

• Key question: Are self-attentions truly effective for time series forecasting?

2

Motivation of Self-Attention Removal

- Weight patterns in final linear layer reveal clearer temporal capture without self-attention.
- Performance analysis suggests self-attention might be unnecessary for time series forecasting.

Effect of self-attention in PatchTST on forecasting performance

Horizon	original	w/o self-attn
96	0.290	0.290
192	0.332	0.328
336	0.366	0.359
720	0.416	0.414

Rethinking Transformer Design

3

- Given the challenges associated with self-attention in time series forecasting, we propose a fundamental rethinking of the Transformer architecture:
 - Traditional Transformers rely heavily on self-attention mechanisms, potentially leading to temporal information loss.

IEURAL INFORMA

- Linear models remove all transformer-based components but may struggle with complex temporal dependencies.
- Our approach removes self-attention layers while preserving the advantages of cross-attention.

• We introduce a Cross-Attention-only Time Series transformer (CATS), that rethinks the traditional Transformer framework by eliminating self-attention and leveraging cross-attention mechanisms instead.

NEURAL INFORMATION

PROCESSING SYSTEMS

Proposed Methodology

(A) Cross-Attention via Future as Query

- Novel query conceptualization
 - Future horizons as learnable parameters
- Direct temporal pattern capture without information loss
- Time and memory complexity reduced to O(LT/P²) from O(L²)

Table 2: Time complexity of transformer-based models to calculate attention outputs. Time refers to the inference time obtained by averaging 10 runs under L = 96 and T = 720 on Electricity.

Method	Encoder	Decoder	Time	Method	Encoder	Decoder	Time
Transformer [13]	$O(L^2)$	$\mathcal{O}(T(T+L))$	10.4ms	Informer [29]	$\mathcal{O}(L \log L)$	$\mathcal{O}(T(T + \log L))$	13.5ms
Autoformer [23]	$\mathcal{O}(L \log L)$	$\mathcal{O}\left(\left(L/2+H\right)\log\left(L/2+T\right)\right)$	24.1ms	Pyraformer [11]	$\mathcal{O}(L)$	O(T(T+L))	11.2ms
FEDformer [31]	$\mathcal{O}(L)$	$\mathcal{O}\left(L/2+H ight)$	69.3ms	Crossformer [28]	$\mathcal{O}\left(ML^2/P^2\right)$	$\mathcal{O}\left(MT(T+L)/P^2\right)$	30.6ms
PatchTST [14]	$\mathcal{O}\left(L^2/P^2\right)$	-	7.6ms	CATS (Ours)	-	$\mathcal{O}\left(LT/P^2 ight)$	7.0ms

(B) Parameter Sharing across Horizons

(B) Parameter Sharing across Horizons

4

- Comprehensive sharing across all network layers
 - Embedding Layer, Attention blocks, Projection Layer
- Cross-dimension parameter sharing

 Significant reduction in model parameters while maintaining performance

Table 3: Effect of parameter sharing across horizons on the number of parameters for different forecasting horizons on ETTh1.

Horizon	w/ sharing	w/o sharing
96	355,320	404,672
192	355,416	552,320
336	355,560	958,112
720	355,944	3,121,568

Proposed Methodology

(C) Query-Adaptive Masking

- Novel selective masking technique
- Prevention of overfitting to keys/values
- Enhanced focus on horizon-specific patterns through probabilistic masking

Figure 8: Comparison of performance with query-adaptive masking with two different probabilities, dropout, and using both query-adaptive masking and dropout. The results of p = 0.1 to 0.7 indicate a probability masking that is linearly increased proportionally to the horizon predicted by the query.

(C) Query-Adaptive Masking

Performance Comparison

Models		CATS		TimeMixer		PatchTST		Timesnet		Crossformer		MICN		FiLM		DLinear		Autoformer		Informer	
Metric		MSE MAE N		MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
eather	96 192 336	0.161 0.208 0.264	0.207 0.250 0.290	0.163 0.208 0.251	0.209 0.250 0.287	0.186 0.234 0.284	0.227 0.265 0.301	0.172 0.219 0.246	0.220 0.261 0.337	0.195 0.209 0.273	0.271 0.277 0.332	0.198 0.239 0.285	0.261 0.299 0.336	0.195 0.239 0.289	0.236 0.271 0.306	0.195 0.237 0.282	0.252 0.295 0.331	0.266 0.307 0.359	0.336 0.367 0.395	0.300 0.598 0.578	0.384 0.544 0.523
W	720	0.342	0.341	0.339	0.341	0.356	<u>0.349</u>	0.365	0.359	0.379	0.401	0.351	0.388	0.361	0.351	0.345	0.382	0.419	0.428	1.059	0.741
Electricity	96 192 336 720	0.149 0.163 0.180 0.219	0.237 0.250 0.268 0.302	$\begin{array}{c} 0.153 \\ 0.166 \\ 0.185 \\ 0.225 \end{array}$	$\frac{\begin{array}{c} 0.247 \\ 0.256 \\ \hline 0.277 \\ \hline 0.310 \end{array}$	0.190 0.199 0.217 0.258	0.296 0.304 0.319 0.352	0.168 0.184 0.198 0.220	0.272 0.322 0.300 0.320	0.219 0.231 0.246 0.280	0.314 0.322 0.337 0.363	0.180 0.189 0.198 0.217	0.293 0.302 0.312 0.330	0.198 0.198 0.217 0.278	0.274 0.278 0.300 0.356	0.210 0.210 0.223 0.258	0.302 0.305 0.319 0.350	0.201 0.222 0.231 0.254	0.317 0.334 0.443 0.361	0.274 0.296 0.300 0.373	0.368 0.386 0.394 0.439
Traffic	96 192 336 720	0.421 0.436 0.453 0.484	0.270 0.275 0.284 0.303	$\begin{array}{c} \underline{0.462} \\ \underline{0.473} \\ \underline{0.498} \\ \underline{0.506} \end{array}$	$\frac{0.285}{0.296}\\ \frac{0.296}{0.296}\\ \frac{0.313}{0.313}$	0.526 0.522 0.517 0.552	0.347 0.332 0.334 0.352	0.593 0.617 0.629 0.640	0.321 0.336 0.336 0.350	0.644 0.665 0.674 0.683	0.429 0.431 0.420 0.424	0.577 0.589 0.594 0.613	0.350 0.356 0.358 0.361	0.647 0.600 0.610 0.691	0.384 0.361 0.367 0.425	0.650 0.598 0.605 0.645	0.396 0.370 0.373 0.394	0.613 0.616 0.622 0.660	0.388 0.382 0.337 0.408	0.719 0.696 0.777 0.864	0.391 0.379 0.420 0.472
ETT (Avg)	96 192 336 720	0.289 0.348 0.376 0.434	0.339 0.374 0.395 0.433	$ \begin{array}{r} \underline{0.290} \\ \underline{0.350} \\ \underline{0.390} \\ \underline{0.439} \end{array} $	0.339 0.373 0.404 0.438	0.326 0.388 0.426 0.464	0.362 0.397 0.423 0.455	0.312 0.365 0.455 0.467	$\begin{array}{c} \underline{0.355} \\ 0.385 \\ 0.421 \\ 0.455 \end{array}$	0.465 0.553 0.686 1.038	0.456 0.518 0.584 0.754	0.340 0.408 0.479 0.597	0.388 0.431 0.476 0.541	0.324 0.384 0.428 0.481	0.358 0.393 0.423 0.459	0.319 0.399 0.469 0.596	0.368 0.418 0.463 0.537	0.389 0.448 0.491 0.533	0.415 0.443 0.473 0.504	1.414 1.985 2.101 2.343	0.816 0.989 1.101 1.163

Multivariate Long-term Time Series Forecasting Results

_ INFORMATION

Short-term	Time \$	Series	Forecasting	Results
------------	---------	--------	-------------	---------

	Models	CATS	TimeMixer	Timesnet	PatchTST	MICN	FiLM	DLinear	Autoformer	Informer
Average	MASE OWA	11.701 1.557 0.838	$\frac{11.723}{1.559}\\ \underline{0.840}$	11.829 1.585 0.851	13.152 1.945 0.998	19.638 5.947 2.279	14.863 2.207 1.125	13.639 2.095 1.051	12.909 1.771 0.939	14.086 2.718 1.230

NEURAL INFORMATION PROCESSING SYSTEMS

• Efficiency Analysis

							0					
	Parameters					G	MSE					
Input Length	336	720	1440	2880	336	720	1440	2880	336	720	1440	2880
PatchTST	4.3M	8.7M (2.0x)	17.0M (4.0x)	33.6M (7.9x)	3.5GB	7.4GB (2.1x)	22.0GB (6.3x)	58.6GB (16.9x)	0.418	0.418	0.420	0.412
TimeMixer	1.1M	4.1M (3.6x)	14.2M (12.6x)	52.9M (46.8x)	2.9GB	3.9GB (1.3x)	5.9GB (2.0x)	10.3GB (3.6x)	0.428	0.425	0.414	0.472
DLinear	0.5M	1.0M (2.1x)	2.1M (4.2x)	4.2M (8.5x)	1.1GB	1.1GB (1.0x)	1.2GB (1.0x)	1.2GB (1.1x)	0.426	0.422	0.401	0.408
CATS	0.4M	0.4M (1.0x)	0.4M (1.0x)	0.4M (1.1x)	1.9GB	2.1GB (1.1x)	2.7GB (1.4x)	3.8GB (2.0x)	0.407	0.402	0.399	0.395

Model Scalability with Input Length

- We introduce **CATS**, a novel architecture that **simplifies the Transformer by eliminating all self-attentions** • and focusing on cross-attention potential.
- We propose three specialized techniques tailored for cross-attention-only transformer: (i) cross-attention ٠ via future as query, (ii) parameter sharing across horizons, and (iii) query-adaptive masking.
- Our model achieves state-of-the-art performance with significantly fewer parameters, providing new • insights into designing efficient architectures for time series forecasting.
- For more results and source code, please visit:

Paper

Code