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Multiple Instance Learning (MIL)

Training data: pairs of the form (X, Y ).

• Bag: X = [x1, . . . ,xN ]
⊤ ∈ RN×P , xn ∈ RP .

• Instance labels (not observed): {y1, . . . , yN} ⊂ {0, 1}.
• Bag label (observed): Y = max {y1, . . . , yN} ∈ {0, 1}.

Test time: given a new bag, we want to predict

• the bag label (classification task),

• the instance labels (localization task).

Why is it useful? Minimal annotation effort.



Multiple Instance Learning (MIL)

Training data: pairs of the form (X, Y ).

• Bag: X = [x1, . . . ,xN ]
⊤ ∈ RN×P , xn ∈ RP .

• Instance labels (not observed): {y1, . . . , yN} ⊂ {0, 1}.
• Bag label (observed): Y = max {y1, . . . , yN} ∈ {0, 1}.

Test time: given a new bag, we want to predict

• the bag label (classification task),

• the instance labels (localization task).

Why is it useful? Minimal annotation effort.



Multiple Instance Learning (MIL)

Training data: pairs of the form (X, Y ).

• Bag: X = [x1, . . . ,xN ]
⊤ ∈ RN×P , xn ∈ RP .

• Instance labels (not observed): {y1, . . . , yN} ⊂ {0, 1}.
• Bag label (observed): Y = max {y1, . . . , yN} ∈ {0, 1}.

Test time: given a new bag, we want to predict

• the bag label (classification task),

• the instance labels (localization task).

Why is it useful? Minimal annotation effort.



MIL in medical imaging

Figure: Whole Slide Image (WSI, bag) and labeled patches (instances).

Figure: Computerized Tomography (CT) scan (bag) and labeled slices (instances).
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Background: deep MIL
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• Attention values (fn ∈ R) are used as a proxy to estimate the instance labels.

• Interactions have shown to improve the classification performance.

• Problem: previous works have been designed to target the classification task... what
about localization?
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Method: the idea

Figure: Map of labeled instances.

• Instance labels show spatial dependencies: an instance is likely to be surrounded by
instances with the same label.

• Attention values fn should inherit this smoothing property... How?
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Method: modelling the smoothness

Let f ∈ RN be attention values; interpreted as a function defined on a graph.

Dirichlet energy ED. Measure of the variability of a function defined on a graph.

Goal. Output f with low ED(f).

Bounding ED (f).

• ED (f) is bounded by the Dirichlet energy of previous layers.

• Consequence: We can act on f itself and/or on the output of previous layers.



Method: modelling the smoothness

Let f ∈ RN be attention values; interpreted as a function defined on a graph.

Dirichlet energy ED. Measure of the variability of a function defined on a graph.

Goal. Output f with low ED(f).

Bounding ED (f).

• ED (f) is bounded by the Dirichlet energy of previous layers.

• Consequence: We can act on f itself and/or on the output of previous layers.



Method: modelling the smoothness

Let f ∈ RN be attention values; interpreted as a function defined on a graph.

Dirichlet energy ED. Measure of the variability of a function defined on a graph.

Goal. Output f with low ED(f).

Bounding ED (f).

• ED (f) is bounded by the Dirichlet energy of previous layers.

• Consequence: We can act on f itself and/or on the output of previous layers.



Method: modelling the smoothness

Let f ∈ RN be attention values; interpreted as a function defined on a graph.

Dirichlet energy ED. Measure of the variability of a function defined on a graph.

Goal. Output f with low ED(f).

Bounding ED (f).

• ED (f) is bounded by the Dirichlet energy of previous layers.

• Consequence: We can act on f itself and/or on the output of previous layers.



Method: modelling the smoothness

Let f ∈ RN be attention values; interpreted as a function defined on a graph.

Dirichlet energy ED. Measure of the variability of a function defined on a graph.

Goal. Output f with low ED(f).

Bounding ED (f).

• ED (f) is bounded by the Dirichlet energy of previous layers.

• Consequence: We can act on f itself and/or on the output of previous layers.



Method: Smooth operator (Sm)

Given U ∈ RN×D, the Smooth operator (Sm) is defined as

Sm (U) = (I+ γL)
−1

U.

Theoretical guarantees. If L is the normalized Laplacian matrix, then

ED (Sm (U)) < ED (U) .

Consequence: It can be used in the different layers of a neural network to decrease ED.

Avoiding matrix inversion. It holds that

Sm (U) = lim
t→∞

G(t),

G(0) = U; G(t) = α (I− L)G(t− 1) + (1− α)U.
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Method: the proposed model
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Experiments

• 3 different medical imaging datasets:
RSNA (CT scans), PANDA (WSIs),
and CAMELYON16 (WSIs).

• 4 different feature extractors, with
and without self-supervised learning.

• Up to 13 different SOTA methods
considered for comparison.

• Results: the proposed methods with
Sm achieve the best performance in
localization and remain very
competitive in classification.

Table: Average rank (lower is better).

Instance
localization

Bag
classification

Without
global

interactions

SmAP 1.5000.548 1.8330.753

ABMIL 2.5001.225 2.5001.049
CLAM 4.1671.329 4.5000.837
DSMIL 4.3330.516 4.1670.753

DFTD-MIL 2.5001.049 2.0001.265

With
global

interactions

SmTAP 1.5001.225 1.8330.983

TransMIL 3.0831.429 4.0830.917
SETMIL 3.6670.816 3.5832.010
GTP 3.9171.429 2.7500.987

CAMIL 2.8331.169 2.7501.173
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Experiments: WSI visualization.

Patch labels SmTAP TransMIL

SETMIL GTP CAMIL

Figure: Attention maps on CAMELYON16. The novel SmTAP produces the most accurate map.



Conclusions

• We draw attention to the localization task: MIL methods need to be evaluated
at the instance level.

• The proposed Sm introduces local interactions in a principled way.

• It achieves the best performance in localization while being highly competitive in
classification.

• Future work: MIL methods need to quantify uncertainty so they can be deployed
in clinical settings.
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Thank you!
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