

The Thirty-Eighth Annual Conference on Neural Information Processing Systems (NeurIPS 2024) NEURAL INFORMATION PROCESSING SYSTEMS

SubgDiff: A Subgraph Diffusion Model to Improve Molecular Representation Learning

Jiying Zhang, Zijing Liu, Yu Wang, Bin Feng, Yu Li

International Digital Economy Academy (IDEA)

Dec. 2024

The World Needs a Few Good IDEAs

CODE

PAPER

Outline

- Background: diffusion model
- Motivation: molecular substructure
- SubgDiff: a subgraph diffusion model for molecular graph learning

Diffusion model (DDPM)

Diffusion model

Diffusion model (DDPM) on 3D Molecules

R^{*i*}: Atomic **coordinates** of 3D molecule

Forward process:

$$\mathbf{R}^{t} = \sqrt{1 - \beta_{t}} \mathbf{R}^{t-1} + \sqrt{\beta_{t}} \boldsymbol{\epsilon}_{t}$$
$$= \sqrt{\overline{\alpha}_{t}} \mathbf{R}^{0} + \sqrt{1 - \overline{\alpha}_{t}} \boldsymbol{\epsilon}_{t}$$

Independently inject Gaussian noise into original 3D atomic position

► Training (denoising) objective: $\mathcal{L}_{simple} = \mathbb{E}_{t,R^0,\epsilon} [|\epsilon - \epsilon_{\theta}(\mathbf{R}^t, t)|^2, \epsilon \sim \mathcal{N}(0, 1)$

where $\alpha_t = 1 - \beta_t$, $\overline{\alpha}_t = \prod_{i=1}^t (1 - \beta_i)$.

where $\epsilon_{\theta}(\mathbf{R}^{t}, t)$ is denoising networks, which can be used as molecule encoder.

> Sampling:
$$R^{t-1} = \frac{1}{\sqrt{\alpha_t}} (R^t - \frac{1 - \alpha_t}{\sqrt{1 - \bar{\alpha}_t}} \epsilon_{\theta}(R^t, t)) + \sigma_t z, \quad z \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

Molecular Representation Learning with Denoising

Conformation Generation: get the 3D atomic Cartesian coordinates from the 2D molecular graph

Recent works[1,2] use this task as a pretraining technique for molecular representation learning.

Observation: Independently inject Gaussian noise into original 3D atomic positions, **neglecting the substructure** in the molecules.

[1] Xu, Minkai, et al. "GeoDiff: A Geometric Diffusion Model for Molecular Conformation Generation." ICLR. 2021.
[2] Zaidi S, Schaarschmidt M, Martens J, et al. Pre-training via denoising for molecular property prediction[J]. ICLR, 2023.
[3] Liu, Shengchao, et al. "A group symmetric stochastic differential equation model for molecule multi-modal pretraining." ICML, 2023.

 $\mathbf{R}^{t} = \sqrt{1 - \beta_{t}} \mathbf{R}^{t-1} + \sqrt{\beta_{t}} \boldsymbol{\epsilon}_{t}$ $= \sqrt{\overline{\alpha}_{t}} \mathbf{R}^{0} + \sqrt{1 - \overline{\alpha}_{t}} \boldsymbol{\epsilon}_{t}$ where $\alpha_{t} = 1 - \beta_{t}, \overline{\alpha}_{t} = \prod_{i=1}^{t} (1 - \beta_{i}).$

Pre-training:

$$\mathcal{L}_{simple} = \mathbb{E}_{t, \mathbb{R}^{0}, \epsilon} [|\boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta}(\mathbf{R}^{t}, \mathcal{G}, \mathbf{t})|^{2}, \boldsymbol{\epsilon} \sim \mathcal{N}(0, 1)$$

where $\epsilon_{\theta}(\mathbf{R}^t, \mathcal{G}, t)$ is the denoising network, which can be used as a molecular **encoder**.

Fine-tuning:

$$loss(f_{\theta'}(\epsilon_{\theta}(\mathbf{R}^{t},\mathcal{G},\mathsf{t})),y)$$

Where $f_{\theta'}$ denotes the prediction header.

Molecular Substructure

- Observation: 3D substructure substructures are closely related to molecular properties.
- Decomposition approach^[1]: Torsional-based decomposition method

The equilibrium probability (p_{eq}) distribution of six different conformations (c1 to c6) of the **Ibuprofen** molecule in various environments (solution, adsorbed, surface, and solid)^[2].

various torsion angles have different properties.

[1] Jing, Bowen, et al. "Torsional diffusion for molecular conformer generation." Advances in Neural Information Processing Systems 35 (2022): 24240-24253.
 [2] Marinova, Veselina, et al. "Dynamics and thermodynamics of ibuprofen conformational isomerism at the crystal/solution interface." Journal of chemical theory and computation (2018)

Motivation

- Existing diffusion models on molecules independently inject Gaussian noise into atomic coordinates during the forward process, neglecting the substructure in the molecules which plays a significant role in molecular representation learning
- It remains open to exploring the molecular substructure in Diffusion model, to improve the denoising network for representation learning.

> Contribution:

- Incorporate the substructure information into diffusion models to improve molecular representation learning;
- Propose a new diffusion model SubgDiff that adopts subgraph prediction, expectation state and k-step same-subgraph diffusion to improve its sampling and training;

Forward process: SubgDIFF vs DDPM

Independently inject Gaussian noise into original 3D atomic position

Forward process: SubgDiff vs DDPM

independently inject Gaussian noise into atoms

Forward process: SubgDiff vs DDPM

independently inject Gaussian noise into atoms

Forward process: SubgDiff vs DDPM

independently inject Gaussian noise into atoms

Training objective

Expectation State

SubgDiff with k-step same subgraph diffusion

SubgDiff state transition

Sampling

$$R^{t-1} = \frac{1}{\sqrt{\gamma_t}} \left(R^t - \frac{\hat{s}_{km+1}\beta_t}{\sqrt{\gamma_t\delta + \hat{s}_{km+1}\beta_t}} \epsilon_\theta(R^t, t) \right) + \frac{\sqrt{\hat{s}_{km+1}\beta_t}\sqrt{\frac{\bar{\gamma}_{t-1}}{\bar{\gamma}_{km}}} p^2 \sum_{l=1}^m \frac{\bar{\alpha}_m}{\bar{\alpha}_l} \left(1 - \frac{\bar{\beta}_{kl}}{\bar{\beta}_{(l-1)k}}\right) + 1 - \frac{\bar{\gamma}_{t-1}}{\bar{\gamma}_{km}}}{\sqrt{\gamma_t\delta + \hat{s}_{km+1}\beta_t}} z, \quad (19)$$

SubgDiff Framework

Algorithm 1: Training SubgDiff

Algorithm 2: Sampling from SubgDiff

 $\begin{array}{ll} k \text{ is the same as training, for } k \text{-step same-subgraph diffusion;} \\ \text{Sample } \mathbf{R}^T \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) & \triangleright \text{ Random noise initialization} \\ \text{for } t = T \text{ to } I \text{ do} & \triangleright \text{ Random noise initialization} \\ & \mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \text{ if } t > 1, \text{ else } \mathbf{z} = \mathbf{0} & \triangleright \text{ Random noise} \\ & \mathbf{If } t\%k == 0 \text{ or } t == T \text{: } \hat{\mathbf{s}} \leftarrow s_{\vartheta}(\mathcal{G}, \mathbf{R}^t, t) & \triangleright \text{ Subgraph prediction} \\ & \hat{\epsilon} \leftarrow \epsilon_{\theta}(\mathcal{G}, \mathbf{R}^t, t) & \triangleright \text{ Posterior} \\ & \mathbf{R}^{t-1} \leftarrow \text{Equation 19} & \triangleright \text{ sampling} \\ \text{end} \\ \text{return } \mathbf{R}^0 \end{array}$

18

SubgDiff Conformation generation

$$\begin{split} & \text{COV-R}(S_g, S_r) = \frac{1}{|S_r|} \Big| \Big\{ \mathcal{C} \in S_r | \operatorname{RMSD}(\mathcal{C}, \hat{\mathcal{C}}) \leq \delta, \hat{\mathcal{C}} \in S_g \Big\} \Big|, \\ & \text{MAT-R}(S_g, S_r) = \frac{1}{|S_r|} \sum_{\substack{\mathcal{C} \in S_r \\ \hat{\mathcal{C}} \in S_g}} \min_{\hat{\mathcal{C}} \in S_g} \operatorname{RMSD}(\mathcal{C}, \hat{\mathcal{C}}), \\ & \text{COV-P}(S_r, S_g) = \frac{1}{|S_g|} \Big| \Big\{ \hat{\mathcal{C}} \in S_g | \operatorname{RMSD}(\mathcal{C}, \hat{\mathcal{C}}) \leq \delta, \mathcal{C} \in S_r \Big\} \Big|, \\ & \text{MAT-P}(S_r, S_g) = \frac{1}{|S_g|} \sum_{\hat{\mathcal{C}} \in S_g} \min_{\substack{\mathcal{C} \in S_r \\ \hat{\mathcal{C}} \in S_g}} \operatorname{RMSD}(\mathcal{C}, \hat{\mathcal{C}}), \end{split}$$

Table 4: Results on **GEOM-QM9** dataset under different diffusion timesteps. DDPM (Ho et al., 2020) is the sampling method used in GeoDiff. Our proposed sampling method (Algorithm 2) can be viewed as a DDPM variant. $\blacktriangle/\checkmark$ denotes SUBGDIFF outperforms/underperforms GEODIFF. The threshold $\delta = 0.5$ Å.

			COV-R (%) ↑		MAT-R (Å)↓		COV-P (%) ↑		MAT-P (Å)↓	
Models	Timesteps	Sampling method	Mean	Median	Mean	Median	Mean	Median	Mean	Median
GEODIFF	5000	DDPM	80.36	83.82	0.2820	0.2799	53.66	50.85	0.6673	0.4214
SubgDiff	5000	DDPM (ours)	90.91	95.59▲	0.2460	0.2351	50.16▼	48.01▼	0.6114	0.4791▼
GEODIFF	500	DDPM	80.20	83.59	0.3617	0.3412	45.49	45.45	1.1518	0.5087
SubgDiff	500	DDPM (ours)	89.78▲	94.17▲	0.2417	0.2449	50.03▲	48.31▲	0.5571	0.4921
GEODIFF	200	DDPM	69.90	72.04	0.4222	0.4272	36.71	33.51	0.8532	0.5554
SubgDiff	200	DDPM (ours)	85.53	88.99▲	0.2994	0.3033	47.76▲	45.89▲	0.6971	0.5118▲

SubgDiff finetuning on MD17 (3D)

Pretrain on PCQM4Mv2. The backbone is SchNet.

Table 12: Results on eight **force** prediction tasks from MD17. We take 1K for training, 1K for validation, and 48K to 991K molecules for the test concerning different tasks. The evaluation is mean absolute error, and the best results are marked in bold and underlined, respectively.

Pretraining	Aspirin \downarrow	Benzene \downarrow	Ethanol \downarrow	Malonaldehyde \downarrow	Naphthalene ↓	Salicylic \downarrow	Toluene \downarrow	Uracil↓
– (random init)	1.203	0.380	0.386	0.794	0.587	0.826	0.568	0.773
Type Prediction	1.383	0.402	0.450	0.879	0.622	1.028	0.662	0.840
Distance Prediction	1.427	0.396	0.434	0.818	0.793	0.952	0.509	1.567
Angle Prediction	1.542	0.447	0.669	1.022	0.680	1.032	0.623	0.768
3D InfoGraph	1.610	0.415	0.560	0.900	0.788	1.278	0.768	1.110
RR	1.215	0.393	0.514	1.092	0.596	0.847	0.570	0.711
InfoNCE	1.132	0.395	0.466	0.888	0.542	0.831	0.554	0.664
EBM-NCE	1.251	0.373	0.457	0.829	0.512	0.990	0.560	0.742
3D InfoMax	1.142	0.388	0.469	0.731	0.785	0.798	0.516	0.640
GraphMVP	1.126	0.377	0.430	0.726	0.498	0.740	0.508	0.620
GeoSSL-1L	1.364	0.391	0.432	0.830	0.599	0.817	0.628	0.607
GeoSSL	1.107	0.360	0.357	0.737	0.568	0.902	0.484	0.502
MoleculeSDE (VE)	$\overline{1.112}$	0.304	0.282	0.520	0.455	0.725	0.515	0.447
MoleculeSDE (VP)	1.244	0.315	0.338	0.488	0.432	0.712	<u>0.478</u>	0.468
Ours	0.880	0.252	0.258	0.459	0.325	0.572	0.362	0.420

SubgDIFF finetuning on MoleculeNet (2D)

Pretrain on PCQM4Mv2. The backbone is GIN.

Table 2: Results for 2D molecular property prediction tasks (with 2D topology only). We report the mean (and standard deviation) ROC-AUC of three random seeds with scaffold splitting for each downstream task. The backbone is GIN. The best and second best results are marked bold and underlined, respectively.

Pre-training	$BBBP\uparrow$	Tox21 \uparrow	ToxCast ↑	Sider ↑	ClinTox \uparrow	$\mathrm{MUV}\uparrow$	$\mathrm{HIV}\uparrow$	Bace ↑	Avg↑
– (random init)	68.1±0.59	75.3±0.22	62.1±0.19	57.0±1.33	83.7±2.93	74.6±2.35	75.2±0.70	76.7±2.51	71.60
AttrMask	65.0 ± 2.36	$74.8 {\pm} 0.25$	62.9 ± 0.11	61.2 ± 0.12	87.7 ± 1.19	$73.4{\pm}2.02$	$76.8 {\pm} 0.53$	79.7 ± 0.33	72.68
ContextPred	65.7 ± 0.62	$74.2 {\pm} 0.06$	62.5 ± 0.31	62.2 ± 0.59	77.2 ± 0.88	75.3 ± 1.57	$77.1 {\pm} 0.86$	$76.0{\pm}2.08$	71.28
InfoGraph	67.5 ± 0.11	73.2 ± 0.43	$63.7 {\pm} 0.50$	$\overline{59.9 \pm 0.30}$	$76.5 {\pm} 1.07$	$74.1 {\pm} 0.74$	$75.1 {\pm} 0.99$	$77.8 {\pm} 0.88$	70.96
MolCLR	66.6 ± 1.89	$73.0 {\pm} 0.16$	62.9 ± 0.38	57.5 ± 1.77	$86.1 {\pm} 0.95$	$72.5 {\pm} 2.38$	76.2 ± 1.51	71.5 ± 3.17	70.79
3D InfoMax	68.3 ± 1.12	$76.1 {\pm} 0.18$	$64.8 {\pm} 0.25$	$60.6 {\pm} 0.78$	79.9 ± 3.49	$74.4 {\pm} 2.45$	$75.9 {\pm} 0.59$	79.7 ± 1.54	72.47
GraphMVP	69.4 ± 0.21	$76.2 {\pm} 0.38$	64.5 ± 0.20	$60.5 {\pm} 0.25$	86.5 ± 1.70	$76.2 {\pm} 2.28$	$76.2 {\pm} 0.81$	$79.8 {\pm} 0.74$	73.66
MoleculeSDE(VE)	68.3 ± 0.25	76.9 ± 0.23	64.7 ± 0.06	$60.2 {\pm} 0.29$	$80.8 {\pm} 2.53$	76.8 ± 1.71	77.0 ± 1.68	79.9 ± 1.76	73.15
MoleculeSDE(VP)	70.1 ± 1.35	77.0 ± 0.12	$\overline{64.0\pm0.07}$	60.8 ± 1.04	82.6 ± 3.64	76.6 ± 3.25	77.3 ± 1.31	81.4 ± 0.66	<u>73.73</u>
Ours	70.2 ± 2.23	77.2±0.39	65.0±0.48	62.2±0.97	88.2±1.57	77.3±1.17	77.6±0.51	82.1±0.96	74.85

THANK YOU

www.idea.edu.cn

IDEA Official WeChat